具有两个发生器的群的表面群猜想

IF 0.6 3区 数学 Q3 MATHEMATICS
Giles Gardam, Dawid Kielak, Alan D. Logan
{"title":"具有两个发生器的群的表面群猜想","authors":"Giles Gardam, Dawid Kielak, Alan D. Logan","doi":"10.4310/mrl.2023.v30.n1.a5","DOIUrl":null,"url":null,"abstract":"The Surface Group Conjectures are statements about recognising surface groups among one-relator groups, using either the structure of their finite-index subgroups, or all subgroups. We resolve these conjectures in the two generator case. More generally, we prove that every two-generator one-relator group with every infinite-index subgroup free is itself either free or a surface group.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Surface Group Conjectures for groups with two generators\",\"authors\":\"Giles Gardam, Dawid Kielak, Alan D. Logan\",\"doi\":\"10.4310/mrl.2023.v30.n1.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Surface Group Conjectures are statements about recognising surface groups among one-relator groups, using either the structure of their finite-index subgroups, or all subgroups. We resolve these conjectures in the two generator case. More generally, we prove that every two-generator one-relator group with every infinite-index subgroup free is itself either free or a surface group.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n1.a5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n1.a5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

表面群猜想是关于在单相关群中识别表面群的陈述,使用它们的有限指数子群或所有子群的结构。我们在两个发电机的情况下解决了这些猜想。更一般地,我们证明了每一个具有无限索引子群自由的双生单相关群本身要么是自由的,要么是表面群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Surface Group Conjectures for groups with two generators
The Surface Group Conjectures are statements about recognising surface groups among one-relator groups, using either the structure of their finite-index subgroups, or all subgroups. We resolve these conjectures in the two generator case. More generally, we prove that every two-generator one-relator group with every infinite-index subgroup free is itself either free or a surface group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信