{"title":"关于偏斜广义幂级数可逆性的一个注记","authors":"E. Ali","doi":"10.28924/2291-8639-21-2023-69","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce and study (S, ω)-nil-reversible rings wherein we call a ring R is (S, ω)-nil-reversible if the left and right annihilators of every nilpotent element of R are equal. The researcher obtains various necessary or sufficient conditions for (S, ω)-nil-reversible rings are abelian, 2-primal, (S, ω)-nil-semicommutative and (S, ω)-nil-Armendariz. Also, he proved that, if R is completely (S, ω)-compatible (S, ω)-nil-reversible and J an ideal consisting of nilpotent elements of bounded index ≤ n in R, then R/J is (S, ¯ω)-nil-reversible. Moreover, other standard rings-theoretic properties are given.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Skew Generalized Power Serieswise Reversible Property\",\"authors\":\"E. Ali\",\"doi\":\"10.28924/2291-8639-21-2023-69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to introduce and study (S, ω)-nil-reversible rings wherein we call a ring R is (S, ω)-nil-reversible if the left and right annihilators of every nilpotent element of R are equal. The researcher obtains various necessary or sufficient conditions for (S, ω)-nil-reversible rings are abelian, 2-primal, (S, ω)-nil-semicommutative and (S, ω)-nil-Armendariz. Also, he proved that, if R is completely (S, ω)-compatible (S, ω)-nil-reversible and J an ideal consisting of nilpotent elements of bounded index ≤ n in R, then R/J is (S, ¯ω)-nil-reversible. Moreover, other standard rings-theoretic properties are given.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Note on Skew Generalized Power Serieswise Reversible Property
The aim of this paper is to introduce and study (S, ω)-nil-reversible rings wherein we call a ring R is (S, ω)-nil-reversible if the left and right annihilators of every nilpotent element of R are equal. The researcher obtains various necessary or sufficient conditions for (S, ω)-nil-reversible rings are abelian, 2-primal, (S, ω)-nil-semicommutative and (S, ω)-nil-Armendariz. Also, he proved that, if R is completely (S, ω)-compatible (S, ω)-nil-reversible and J an ideal consisting of nilpotent elements of bounded index ≤ n in R, then R/J is (S, ¯ω)-nil-reversible. Moreover, other standard rings-theoretic properties are given.