关于偏斜广义幂级数可逆性的一个注记

IF 0.7 Q2 MATHEMATICS
E. Ali
{"title":"关于偏斜广义幂级数可逆性的一个注记","authors":"E. Ali","doi":"10.28924/2291-8639-21-2023-69","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce and study (S, ω)-nil-reversible rings wherein we call a ring R is (S, ω)-nil-reversible if the left and right annihilators of every nilpotent element of R are equal. The researcher obtains various necessary or sufficient conditions for (S, ω)-nil-reversible rings are abelian, 2-primal, (S, ω)-nil-semicommutative and (S, ω)-nil-Armendariz. Also, he proved that, if R is completely (S, ω)-compatible (S, ω)-nil-reversible and J an ideal consisting of nilpotent elements of bounded index ≤ n in R, then R/J is (S, ¯ω)-nil-reversible. Moreover, other standard rings-theoretic properties are given.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Skew Generalized Power Serieswise Reversible Property\",\"authors\":\"E. Ali\",\"doi\":\"10.28924/2291-8639-21-2023-69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to introduce and study (S, ω)-nil-reversible rings wherein we call a ring R is (S, ω)-nil-reversible if the left and right annihilators of every nilpotent element of R are equal. The researcher obtains various necessary or sufficient conditions for (S, ω)-nil-reversible rings are abelian, 2-primal, (S, ω)-nil-semicommutative and (S, ω)-nil-Armendariz. Also, he proved that, if R is completely (S, ω)-compatible (S, ω)-nil-reversible and J an ideal consisting of nilpotent elements of bounded index ≤ n in R, then R/J is (S, ¯ω)-nil-reversible. Moreover, other standard rings-theoretic properties are given.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是介绍和研究(S,ω)-nil可逆环,其中如果R的每个幂零元素的左零子和右零子相等,则称环R为(S,Ω)-nil可可逆环。研究者得到了(S,ω)-nil可逆环是阿贝尔,2-原环,(S,Ω)-nil半交换环和(S,φ)-nil Armendariz的各种充要条件。此外,他还证明了,如果R是完全(S,ω)-相容的(S,Ω)-nil可逆的,并且J是由R中有界指数≤n的幂零元组成的理想,那么R/J是(S,’ω)-nil可可逆的。此外,还给出了其它标准环的理论性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Skew Generalized Power Serieswise Reversible Property
The aim of this paper is to introduce and study (S, ω)-nil-reversible rings wherein we call a ring R is (S, ω)-nil-reversible if the left and right annihilators of every nilpotent element of R are equal. The researcher obtains various necessary or sufficient conditions for (S, ω)-nil-reversible rings are abelian, 2-primal, (S, ω)-nil-semicommutative and (S, ω)-nil-Armendariz. Also, he proved that, if R is completely (S, ω)-compatible (S, ω)-nil-reversible and J an ideal consisting of nilpotent elements of bounded index ≤ n in R, then R/J is (S, ¯ω)-nil-reversible. Moreover, other standard rings-theoretic properties are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信