{"title":"超级电容器用SnO2/rGO纳米复合电极材料的制备与表征","authors":"Ying Zhang, Manna Liu, Shishuai Sun, Liying Yang","doi":"10.1177/2633366X20909839","DOIUrl":null,"url":null,"abstract":"The ultrafine tin oxide (SnO2) nanorods/reduced graphene oxide (rGO) composites are synthesized by a two-step hydrothermal method. The prepared nanocomposites are characterized by scanning electron microscope, X-ray diffractometer, and Fourier transform infrared spectra. The results of electrochemical performance show that specific capacitance of the composite can reach 262.2 F g−1 at the current density of 100 mA g−1 in the 1 M Na2SO4 electrolyte. An initial capacitance retention of the composite is 96.1% after 6000 cycles, indicating its excellent electrochemical performance.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X20909839","citationCount":"15","resultStr":"{\"title\":\"The preparation and characterization of SnO2/rGO nanocomposites electrode materials for supercapacitor\",\"authors\":\"Ying Zhang, Manna Liu, Shishuai Sun, Liying Yang\",\"doi\":\"10.1177/2633366X20909839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultrafine tin oxide (SnO2) nanorods/reduced graphene oxide (rGO) composites are synthesized by a two-step hydrothermal method. The prepared nanocomposites are characterized by scanning electron microscope, X-ray diffractometer, and Fourier transform infrared spectra. The results of electrochemical performance show that specific capacitance of the composite can reach 262.2 F g−1 at the current density of 100 mA g−1 in the 1 M Na2SO4 electrolyte. An initial capacitance retention of the composite is 96.1% after 6000 cycles, indicating its excellent electrochemical performance.\",\"PeriodicalId\":55551,\"journal\":{\"name\":\"Advanced Composites Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2633366X20909839\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2633366X20909839\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20909839","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 15
摘要
采用两步水热法制备了超细氧化锡纳米棒/还原氧化石墨烯复合材料。用扫描电镜、x射线衍射仪和傅里叶变换红外光谱对所制备的纳米复合材料进行了表征。电化学性能测试结果表明,在1 M Na2SO4电解液中,当电流密度为100 mA g−1时,复合材料的比电容可达262.2 F g−1。经过6000次循环后,复合材料的初始电容保持率为96.1%,表明其具有良好的电化学性能。
The preparation and characterization of SnO2/rGO nanocomposites electrode materials for supercapacitor
The ultrafine tin oxide (SnO2) nanorods/reduced graphene oxide (rGO) composites are synthesized by a two-step hydrothermal method. The prepared nanocomposites are characterized by scanning electron microscope, X-ray diffractometer, and Fourier transform infrared spectra. The results of electrochemical performance show that specific capacitance of the composite can reach 262.2 F g−1 at the current density of 100 mA g−1 in the 1 M Na2SO4 electrolyte. An initial capacitance retention of the composite is 96.1% after 6000 cycles, indicating its excellent electrochemical performance.
期刊介绍:
Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.