{"title":"基于Spalart-Allmaras模型的大涡模拟多保真度参数灵敏度估计","authors":"Nikhil Oberoi, Walter Arias-Ramírez, J. Larsson","doi":"10.1080/14685248.2023.2212982","DOIUrl":null,"url":null,"abstract":"ABSTRACT A computationally affordable approach to estimate parametric sensitivities of engineering relevant quantities of interest for a large eddy simulation (LES) is explored. The method is based on defining a Reynolds-averaged Navier–Stokes (RANS) problem that is constrained to reproduce the LES mean flow field. The proposed method is described and assessed for a shock/boundary layer interaction problem, where the shock angle and wall temperature are considered variable or uncertain. In the current work, we show that the proposed method offers improved sensitivity predictions for certain flow features as compared to standalone RANS simulations, while using a fraction of the LES cost.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-fidelity parametric sensitivity estimation for large eddy simulation with the Spalart–Allmaras model\",\"authors\":\"Nikhil Oberoi, Walter Arias-Ramírez, J. Larsson\",\"doi\":\"10.1080/14685248.2023.2212982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A computationally affordable approach to estimate parametric sensitivities of engineering relevant quantities of interest for a large eddy simulation (LES) is explored. The method is based on defining a Reynolds-averaged Navier–Stokes (RANS) problem that is constrained to reproduce the LES mean flow field. The proposed method is described and assessed for a shock/boundary layer interaction problem, where the shock angle and wall temperature are considered variable or uncertain. In the current work, we show that the proposed method offers improved sensitivity predictions for certain flow features as compared to standalone RANS simulations, while using a fraction of the LES cost.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2023.2212982\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2212982","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-fidelity parametric sensitivity estimation for large eddy simulation with the Spalart–Allmaras model
ABSTRACT A computationally affordable approach to estimate parametric sensitivities of engineering relevant quantities of interest for a large eddy simulation (LES) is explored. The method is based on defining a Reynolds-averaged Navier–Stokes (RANS) problem that is constrained to reproduce the LES mean flow field. The proposed method is described and assessed for a shock/boundary layer interaction problem, where the shock angle and wall temperature are considered variable or uncertain. In the current work, we show that the proposed method offers improved sensitivity predictions for certain flow features as compared to standalone RANS simulations, while using a fraction of the LES cost.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.