氢化E110opt和E635管的结构特征

IF 1.5 Q3 Materials Science
M. Isaenkova, M. Petrov, I. V. Kozlov, A. V. Bogomolova
{"title":"氢化E110opt和E635管的结构特征","authors":"M. Isaenkova, M. Petrov, I. V. Kozlov, A. V. Bogomolova","doi":"10.17580/nfm.2023.01.07","DOIUrl":null,"url":null,"abstract":"The paper investigates the behavior of the hydride phase in hydrogenated tubes made of Russian zirconium E635 and E110opt alloys. The orientation and fraction of mesoscale hydrides in the alloy matrix have been described by analyzing optical metallographic images using the developed software. Metallographic images were used to assess the predominant orientation of hydrides in the axial section of the tube, as well as the surface density of the hydride phase with an increase in the concentration of hydrogen in tubes made of different alloys. It has been shown that increasing the hydrogen concentration to 600–700 wppm increases the number of radially oriented hydrides, which is associated with the development of compressive radial stress during the formation of tangentially oriented hydrides at the initial stage. Increasing the hydrogen concentration in E110opt alloy cladding tubes to 600–700 wppm leads to a change in the orientation of the (cid:14) -zirconium basal axes, which results in an increase in the integral textural f R f -parameter and a decrease in the f T ff - and f L f -parameters. This change is due to the development of radial compressive stress and is only possible due to the activation of twinning in the grains, the basal axes of which are deflected from the compressive stress at an angle of up to 90 degrees.","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural features of hydrogenated E110opt and E635 tubes\",\"authors\":\"M. Isaenkova, M. Petrov, I. V. Kozlov, A. V. Bogomolova\",\"doi\":\"10.17580/nfm.2023.01.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the behavior of the hydride phase in hydrogenated tubes made of Russian zirconium E635 and E110opt alloys. The orientation and fraction of mesoscale hydrides in the alloy matrix have been described by analyzing optical metallographic images using the developed software. Metallographic images were used to assess the predominant orientation of hydrides in the axial section of the tube, as well as the surface density of the hydride phase with an increase in the concentration of hydrogen in tubes made of different alloys. It has been shown that increasing the hydrogen concentration to 600–700 wppm increases the number of radially oriented hydrides, which is associated with the development of compressive radial stress during the formation of tangentially oriented hydrides at the initial stage. Increasing the hydrogen concentration in E110opt alloy cladding tubes to 600–700 wppm leads to a change in the orientation of the (cid:14) -zirconium basal axes, which results in an increase in the integral textural f R f -parameter and a decrease in the f T ff - and f L f -parameters. This change is due to the development of radial compressive stress and is only possible due to the activation of twinning in the grains, the basal axes of which are deflected from the compressive stress at an angle of up to 90 degrees.\",\"PeriodicalId\":19653,\"journal\":{\"name\":\"Nonferrous Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonferrous Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17580/nfm.2023.01.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonferrous Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17580/nfm.2023.01.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural features of hydrogenated E110opt and E635 tubes
The paper investigates the behavior of the hydride phase in hydrogenated tubes made of Russian zirconium E635 and E110opt alloys. The orientation and fraction of mesoscale hydrides in the alloy matrix have been described by analyzing optical metallographic images using the developed software. Metallographic images were used to assess the predominant orientation of hydrides in the axial section of the tube, as well as the surface density of the hydride phase with an increase in the concentration of hydrogen in tubes made of different alloys. It has been shown that increasing the hydrogen concentration to 600–700 wppm increases the number of radially oriented hydrides, which is associated with the development of compressive radial stress during the formation of tangentially oriented hydrides at the initial stage. Increasing the hydrogen concentration in E110opt alloy cladding tubes to 600–700 wppm leads to a change in the orientation of the (cid:14) -zirconium basal axes, which results in an increase in the integral textural f R f -parameter and a decrease in the f T ff - and f L f -parameters. This change is due to the development of radial compressive stress and is only possible due to the activation of twinning in the grains, the basal axes of which are deflected from the compressive stress at an angle of up to 90 degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonferrous Metals
Nonferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.50
自引率
0.00%
发文量
7
期刊介绍: Its thematic plan covers all directions of scientific and technical development in non-ferrous metallurgy. The main journal sections include scientific-technical papers on heavy and light non-ferrous metals, noble metals and alloys, rare and rare earth metals, carbon materials, composites and multi-functional coatings, radioactive elements, nanostructured metals and materials, metal forming, automation etc. Theoretical and practical problems of ore mining and mineral processing, production and processing of non-ferrous metals, complex usage of ores, economics and production management, automation of metallurgical processes are widely observed in this journal. "Non-ferrous Metals" journal publishes the papers of well-known scientists and leading metallurgists, elucidates important scientific-technical problems of development of concentrating and metallurgical enterprises, scientific-research institutes and universities in the field of non-ferrous metallurgy, presents new scientific directions and technical innovations in this area. The readers can find in this journal both the articles with applied investigations and with results of fundamental researches that make the base for new technical developments. Publishing according to the approach APC (Article processing charge).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信