使用不同配置的风力涡轮机和光伏板的绿色制氢技术经济评估

Q3 Energy
M. Nasser, T. Megahed, S. Ookawara, Hamdy Hassan
{"title":"使用不同配置的风力涡轮机和光伏板的绿色制氢技术经济评估","authors":"M. Nasser, T. Megahed, S. Ookawara, Hamdy Hassan","doi":"10.30521/jes.1132111","DOIUrl":null,"url":null,"abstract":"In this work, a hybrid system is comprised of wind turbines (WT) and photovoltaic (PV) panels to generate green Hydrogen via water electrolysis. Consideration is given to the influence of five electrical power generation scenarios on system performance and Hydrogen production cost. This study adopts the solar radiation, wind speed, and ambient temperature for Mersa-Matruh in Egypt. The system performance is studied using MATLAB-Simulink over one year. The winter months have high wind speed and low sun radiation compared to other months, whereas additional months have high solar radiation and lower wind speed than the winter months. The findings show that the amount of Hydrogen produced for all scenarios varies from 12,340 m3 to 13,748 m3 per year. The system efficiency and LCOH are 7.974% and 3.67$/kg, 9.56%, and 3.97$/kg, 10.7% and 4.12 $/kg, 12.08%, and 4.3$/kg, and 16.23% and 4.69$/kg for scenarios1 to 5, respectively. Finally, the introduced system can reduce CO2 emissions by 345 tons over the lifetime and gain about 13,806$.","PeriodicalId":52308,"journal":{"name":"Journal of Energy Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Techno-economic assessment of green hydrogen production using different configurations of wind turbines and PV panels\",\"authors\":\"M. Nasser, T. Megahed, S. Ookawara, Hamdy Hassan\",\"doi\":\"10.30521/jes.1132111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a hybrid system is comprised of wind turbines (WT) and photovoltaic (PV) panels to generate green Hydrogen via water electrolysis. Consideration is given to the influence of five electrical power generation scenarios on system performance and Hydrogen production cost. This study adopts the solar radiation, wind speed, and ambient temperature for Mersa-Matruh in Egypt. The system performance is studied using MATLAB-Simulink over one year. The winter months have high wind speed and low sun radiation compared to other months, whereas additional months have high solar radiation and lower wind speed than the winter months. The findings show that the amount of Hydrogen produced for all scenarios varies from 12,340 m3 to 13,748 m3 per year. The system efficiency and LCOH are 7.974% and 3.67$/kg, 9.56%, and 3.97$/kg, 10.7% and 4.12 $/kg, 12.08%, and 4.3$/kg, and 16.23% and 4.69$/kg for scenarios1 to 5, respectively. Finally, the introduced system can reduce CO2 emissions by 345 tons over the lifetime and gain about 13,806$.\",\"PeriodicalId\":52308,\"journal\":{\"name\":\"Journal of Energy Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30521/jes.1132111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30521/jes.1132111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,一个由风力涡轮机(WT)和光伏(PV)面板组成的混合系统通过水电解产生绿色氢气。考虑了五种发电场景对系统性能和氢气生产成本的影响。本研究采用了埃及Mersa Matruh的太阳辐射、风速和环境温度。使用MATLAB Simulink对系统性能进行了为期一年的研究。与其他月份相比,冬季月份的风速高,太阳辐射低,而其他月份的太阳辐射高,风速低。研究结果表明,所有情况下的氢气产量每年从12340立方米到13748立方米不等。场景1-5的系统效率和LCOH分别为7.974%和3.67$/kg、9.56%和3.97$/kg,10.7%和4.12$/kg、12.08%和4.3$/kg,16.23%和4.69$/kg。最后,引入的系统可以在使用寿命内减少345吨二氧化碳排放,并获得约13806$的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Techno-economic assessment of green hydrogen production using different configurations of wind turbines and PV panels
In this work, a hybrid system is comprised of wind turbines (WT) and photovoltaic (PV) panels to generate green Hydrogen via water electrolysis. Consideration is given to the influence of five electrical power generation scenarios on system performance and Hydrogen production cost. This study adopts the solar radiation, wind speed, and ambient temperature for Mersa-Matruh in Egypt. The system performance is studied using MATLAB-Simulink over one year. The winter months have high wind speed and low sun radiation compared to other months, whereas additional months have high solar radiation and lower wind speed than the winter months. The findings show that the amount of Hydrogen produced for all scenarios varies from 12,340 m3 to 13,748 m3 per year. The system efficiency and LCOH are 7.974% and 3.67$/kg, 9.56%, and 3.97$/kg, 10.7% and 4.12 $/kg, 12.08%, and 4.3$/kg, and 16.23% and 4.69$/kg for scenarios1 to 5, respectively. Finally, the introduced system can reduce CO2 emissions by 345 tons over the lifetime and gain about 13,806$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Systems
Journal of Energy Systems Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.60
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信