核磁共振量子信息处理:印度的贡献和观点

IF 1.8 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Kavita Dorai,  Arvind
{"title":"核磁共振量子信息处理:印度的贡献和观点","authors":"Kavita Dorai,&nbsp; Arvind","doi":"10.1007/s41745-022-00353-6","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum processors based on NMR architectures, which use nuclear spins as qubits and radio frequency pulses to implement unitary quantum gates, came into existence nearly two decades ago. Since their first proof-of-principle demonstrations as a testbed quantum processors, NMR quantum processors have contributed significantly to advances in various subareas of quantum information processing. Indian researchers have been working in this field since its inception and have continued to contribute to novel developments. This article begins by delineating the basic building blocks of an NMR quantum processor and evaluating the advantages and disadvantages of this quantum technology. Contributions of NMR quantum information processing techniques in the areas of the state initialization and quantum control, experimental implementation of quantum algorithms, entanglement detection and characterization, foundational tests of quantum mechanics, quantum state and process tomography, noise characterization and decoherence mitigation protocols, quantum simulation, and quantum thermodynamics are described. The article traces the historical development of this area, with an emphasis on Indian contributions and perspectives.</p></div>","PeriodicalId":675,"journal":{"name":"Journal of the Indian Institute of Science","volume":"103 2","pages":"569 - 589"},"PeriodicalIF":1.8000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMR Quantum Information Processing: Indian Contributions and Perspectives\",\"authors\":\"Kavita Dorai,&nbsp; Arvind\",\"doi\":\"10.1007/s41745-022-00353-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum processors based on NMR architectures, which use nuclear spins as qubits and radio frequency pulses to implement unitary quantum gates, came into existence nearly two decades ago. Since their first proof-of-principle demonstrations as a testbed quantum processors, NMR quantum processors have contributed significantly to advances in various subareas of quantum information processing. Indian researchers have been working in this field since its inception and have continued to contribute to novel developments. This article begins by delineating the basic building blocks of an NMR quantum processor and evaluating the advantages and disadvantages of this quantum technology. Contributions of NMR quantum information processing techniques in the areas of the state initialization and quantum control, experimental implementation of quantum algorithms, entanglement detection and characterization, foundational tests of quantum mechanics, quantum state and process tomography, noise characterization and decoherence mitigation protocols, quantum simulation, and quantum thermodynamics are described. The article traces the historical development of this area, with an emphasis on Indian contributions and perspectives.</p></div>\",\"PeriodicalId\":675,\"journal\":{\"name\":\"Journal of the Indian Institute of Science\",\"volume\":\"103 2\",\"pages\":\"569 - 589\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Institute of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41745-022-00353-6\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Institute of Science","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s41745-022-00353-6","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于核磁共振架构的量子处理器,使用核自旋作为量子比特和射频脉冲来实现单一量子门,在近20年前就出现了。自从他们的第一个原理证明演示作为测试平台量子处理器以来,核磁共振量子处理器为量子信息处理的各个子领域的进步做出了重大贡献。印度的研究人员从一开始就在这一领域工作,并继续为新的发展做出贡献。本文首先描述了核磁共振量子处理器的基本构建模块,并评估了这种量子技术的优缺点。描述了核磁共振量子信息处理技术在状态初始化和量子控制、量子算法的实验实现、纠缠检测和表征、量子力学的基础测试、量子状态和过程断层扫描、噪声表征和退相干缓解协议、量子模拟和量子热力学等领域的贡献。这篇文章追溯了这一地区的历史发展,重点是印度的贡献和观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NMR Quantum Information Processing: Indian Contributions and Perspectives

NMR Quantum Information Processing: Indian Contributions and Perspectives

Quantum processors based on NMR architectures, which use nuclear spins as qubits and radio frequency pulses to implement unitary quantum gates, came into existence nearly two decades ago. Since their first proof-of-principle demonstrations as a testbed quantum processors, NMR quantum processors have contributed significantly to advances in various subareas of quantum information processing. Indian researchers have been working in this field since its inception and have continued to contribute to novel developments. This article begins by delineating the basic building blocks of an NMR quantum processor and evaluating the advantages and disadvantages of this quantum technology. Contributions of NMR quantum information processing techniques in the areas of the state initialization and quantum control, experimental implementation of quantum algorithms, entanglement detection and characterization, foundational tests of quantum mechanics, quantum state and process tomography, noise characterization and decoherence mitigation protocols, quantum simulation, and quantum thermodynamics are described. The article traces the historical development of this area, with an emphasis on Indian contributions and perspectives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Indian Institute of Science
Journal of the Indian Institute of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
4.30
自引率
0.00%
发文量
75
期刊介绍: Started in 1914 as the second scientific journal to be published from India, the Journal of the Indian Institute of Science became a multidisciplinary reviews journal covering all disciplines of science, engineering and technology in 2007. Since then each issue is devoted to a specific topic of contemporary research interest and guest-edited by eminent researchers. Authors selected by the Guest Editor(s) and/or the Editorial Board are invited to submit their review articles; each issue is expected to serve as a state-of-the-art review of a topic from multiple viewpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信