G. Setyono, D. Khusna, Navik Kholili, Lingga Putra Sanjaya, Fajar Galang Argil Putra
{"title":"丁醇-汽油混合气单火花点火发动机废气排放燃烧特性研究","authors":"G. Setyono, D. Khusna, Navik Kholili, Lingga Putra Sanjaya, Fajar Galang Argil Putra","doi":"10.35970/infotekmesin.v14i2.1903","DOIUrl":null,"url":null,"abstract":"Butanol as a fuel has a high oxygen content, so the combustion process will be more friendly to the environment. In this study, butanol will be mixed with RON-90 gasoline with a capacity of 5% (B5); 7%(B7); 10%(B10); 12%(B12); 15%(B15) and 18%(B18). The engine used is an automatic transmission with a capacity of 109.5cc with a compression ratio of 9.5:1. The test equipment for engine performance and exhaust emissions is the 50L BRT Super-Dyno and EPSG4 Gas Analyzer. The results showed that using B18 fuel for CO exhaust emissions decreased by 44% at an engine speed of 6000rpm. CO2 exhaust emissions have decreased by 47% at 8000rpm engine speed. HC exhaust emissions have decreased by 28% at 9000rpm engine speed. In contrast to NOx emissions, which increased by 22% at 9000rpm engine speed, this was due to the increasing temperature in the combustion chamber.","PeriodicalId":33598,"journal":{"name":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of Exhaust Emissions Combustion Characteristics in Single Spark Ignition-Engine Matic with Butanol-Gasoline Mixture\",\"authors\":\"G. Setyono, D. Khusna, Navik Kholili, Lingga Putra Sanjaya, Fajar Galang Argil Putra\",\"doi\":\"10.35970/infotekmesin.v14i2.1903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Butanol as a fuel has a high oxygen content, so the combustion process will be more friendly to the environment. In this study, butanol will be mixed with RON-90 gasoline with a capacity of 5% (B5); 7%(B7); 10%(B10); 12%(B12); 15%(B15) and 18%(B18). The engine used is an automatic transmission with a capacity of 109.5cc with a compression ratio of 9.5:1. The test equipment for engine performance and exhaust emissions is the 50L BRT Super-Dyno and EPSG4 Gas Analyzer. The results showed that using B18 fuel for CO exhaust emissions decreased by 44% at an engine speed of 6000rpm. CO2 exhaust emissions have decreased by 47% at 8000rpm engine speed. HC exhaust emissions have decreased by 28% at 9000rpm engine speed. In contrast to NOx emissions, which increased by 22% at 9000rpm engine speed, this was due to the increasing temperature in the combustion chamber.\",\"PeriodicalId\":33598,\"journal\":{\"name\":\"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35970/infotekmesin.v14i2.1903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35970/infotekmesin.v14i2.1903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Exhaust Emissions Combustion Characteristics in Single Spark Ignition-Engine Matic with Butanol-Gasoline Mixture
Butanol as a fuel has a high oxygen content, so the combustion process will be more friendly to the environment. In this study, butanol will be mixed with RON-90 gasoline with a capacity of 5% (B5); 7%(B7); 10%(B10); 12%(B12); 15%(B15) and 18%(B18). The engine used is an automatic transmission with a capacity of 109.5cc with a compression ratio of 9.5:1. The test equipment for engine performance and exhaust emissions is the 50L BRT Super-Dyno and EPSG4 Gas Analyzer. The results showed that using B18 fuel for CO exhaust emissions decreased by 44% at an engine speed of 6000rpm. CO2 exhaust emissions have decreased by 47% at 8000rpm engine speed. HC exhaust emissions have decreased by 28% at 9000rpm engine speed. In contrast to NOx emissions, which increased by 22% at 9000rpm engine speed, this was due to the increasing temperature in the combustion chamber.