{"title":"一类时空捕食者-猎物模型的局部解和全局解的存在性","authors":"Ricardo Cano-Macias, Jorge Mauricio Ruiz-Vera","doi":"10.11144/javeriana.sc24-3.eola","DOIUrl":null,"url":null,"abstract":"In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.","PeriodicalId":39200,"journal":{"name":"Universitas Scientiarum","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of local and global solution for a spatio-temporal predator-prey model\",\"authors\":\"Ricardo Cano-Macias, Jorge Mauricio Ruiz-Vera\",\"doi\":\"10.11144/javeriana.sc24-3.eola\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.\",\"PeriodicalId\":39200,\"journal\":{\"name\":\"Universitas Scientiarum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universitas Scientiarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11144/javeriana.sc24-3.eola\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universitas Scientiarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/javeriana.sc24-3.eola","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Multidisciplinary","Score":null,"Total":0}
Existence of local and global solution for a spatio-temporal predator-prey model
In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.