I. R. Nabiullin, A. V. Boretskaya, M. V. Berezkina, R. R. Gil’mullin, S. R. Egorova
{"title":"铁钾催化剂在乙苯脱氢制苯乙烯反应器运行过程中理化性质和催化性能的变化","authors":"I. R. Nabiullin, A. V. Boretskaya, M. V. Berezkina, R. R. Gil’mullin, S. R. Egorova","doi":"10.1134/S2070050422040092","DOIUrl":null,"url":null,"abstract":"<p>A study of original iron–potassium catalysts of ethylbenzene (EB) dehydrogenation to styrene and industrially used catalysts: Cat-1 (imported), Cat-2 and Cat-3 (domestic) is performed. Initial samples are multiphase systems consisting of potassium ferrites, hematite, and cerianite (CeO<sub>2</sub>). The phase composition of the catalysts after two years of operation consists mainly of magnetite and cerianite, while the amount of potassium (K<sup>+</sup>) in Cat-1, Cat-2, and Cat-3 samples falls by 40, 20, and 26%, respectively. At the same time, K<sup>+</sup> for the Cat-2 sample is distributed uniformly in granules of the waste catalyst. XRD data indicate the CSR size of its CeO<sub>2</sub> crystals does not change appreciably. The CSR size of CeO<sub>2</sub> crystals in the Cat-3 sample falls from 302 to 110 Å, while it grows from 284 to 419 Å in the Cat-1 sample. After two years of operation, the greatest conversion of EB (72.1%) was observed for the Cat-2 sample, and it fell from 72.3 to 57.4% on the Cat-3 sample. There is a 600–1100% drop in the waste samples’ resistance to crushing, making them unsuitable for further use.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 4","pages":"327 - 335"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the Physicochemical and Catalytic Properties of Iron–Potassium Catalysts under Operation in a Reactor of Ethylbenzene Dehydrogenation to Styrene at Nizhnekamskneftekhim\",\"authors\":\"I. R. Nabiullin, A. V. Boretskaya, M. V. Berezkina, R. R. Gil’mullin, S. R. Egorova\",\"doi\":\"10.1134/S2070050422040092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A study of original iron–potassium catalysts of ethylbenzene (EB) dehydrogenation to styrene and industrially used catalysts: Cat-1 (imported), Cat-2 and Cat-3 (domestic) is performed. Initial samples are multiphase systems consisting of potassium ferrites, hematite, and cerianite (CeO<sub>2</sub>). The phase composition of the catalysts after two years of operation consists mainly of magnetite and cerianite, while the amount of potassium (K<sup>+</sup>) in Cat-1, Cat-2, and Cat-3 samples falls by 40, 20, and 26%, respectively. At the same time, K<sup>+</sup> for the Cat-2 sample is distributed uniformly in granules of the waste catalyst. XRD data indicate the CSR size of its CeO<sub>2</sub> crystals does not change appreciably. The CSR size of CeO<sub>2</sub> crystals in the Cat-3 sample falls from 302 to 110 Å, while it grows from 284 to 419 Å in the Cat-1 sample. After two years of operation, the greatest conversion of EB (72.1%) was observed for the Cat-2 sample, and it fell from 72.3 to 57.4% on the Cat-3 sample. There is a 600–1100% drop in the waste samples’ resistance to crushing, making them unsuitable for further use.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"14 4\",\"pages\":\"327 - 335\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050422040092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422040092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Changes in the Physicochemical and Catalytic Properties of Iron–Potassium Catalysts under Operation in a Reactor of Ethylbenzene Dehydrogenation to Styrene at Nizhnekamskneftekhim
A study of original iron–potassium catalysts of ethylbenzene (EB) dehydrogenation to styrene and industrially used catalysts: Cat-1 (imported), Cat-2 and Cat-3 (domestic) is performed. Initial samples are multiphase systems consisting of potassium ferrites, hematite, and cerianite (CeO2). The phase composition of the catalysts after two years of operation consists mainly of magnetite and cerianite, while the amount of potassium (K+) in Cat-1, Cat-2, and Cat-3 samples falls by 40, 20, and 26%, respectively. At the same time, K+ for the Cat-2 sample is distributed uniformly in granules of the waste catalyst. XRD data indicate the CSR size of its CeO2 crystals does not change appreciably. The CSR size of CeO2 crystals in the Cat-3 sample falls from 302 to 110 Å, while it grows from 284 to 419 Å in the Cat-1 sample. After two years of operation, the greatest conversion of EB (72.1%) was observed for the Cat-2 sample, and it fell from 72.3 to 57.4% on the Cat-3 sample. There is a 600–1100% drop in the waste samples’ resistance to crushing, making them unsuitable for further use.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.