M. B. Benboubker, E. Nassouri, S. Ouaro, U. Traoré
{"title":"具有Neumann非齐次边界条件的p(·)-Laplace方程的重正化解","authors":"M. B. Benboubker, E. Nassouri, S. Ouaro, U. Traoré","doi":"10.2478/mjpaa-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we prove the existence of at least one renormalized solution for the p(x)-Laplacian equation associated with a maximal monotone operator and Radon measure data. The functional setting involves Sobolev spaces with variable exponent W1,p(·)(Ω).","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"163 - 178"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Renormalized solutions for a p(·)-Laplacian equation with Neumann nonhomogeneous boundary condition involving diffuse measure data and variable exponent\",\"authors\":\"M. B. Benboubker, E. Nassouri, S. Ouaro, U. Traoré\",\"doi\":\"10.2478/mjpaa-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we prove the existence of at least one renormalized solution for the p(x)-Laplacian equation associated with a maximal monotone operator and Radon measure data. The functional setting involves Sobolev spaces with variable exponent W1,p(·)(Ω).\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"163 - 178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Renormalized solutions for a p(·)-Laplacian equation with Neumann nonhomogeneous boundary condition involving diffuse measure data and variable exponent
Abstract In this paper we prove the existence of at least one renormalized solution for the p(x)-Laplacian equation associated with a maximal monotone operator and Radon measure data. The functional setting involves Sobolev spaces with variable exponent W1,p(·)(Ω).