类风湿关节的机制细胞图谱

Naouel Zerrouk, Sahar Aghakhani, Vidisha Singh, F. Augé, A. Niarakis
{"title":"类风湿关节的机制细胞图谱","authors":"Naouel Zerrouk, Sahar Aghakhani, Vidisha Singh, F. Augé, A. Niarakis","doi":"10.3389/fsysb.2022.925791","DOIUrl":null,"url":null,"abstract":"Rheumatoid Arthritis (RA) is an autoimmune disease of unknown aetiology involving complex interactions between environmental and genetic factors. Its pathogenesis is suspected to arise from intricate interplays between signalling, gene regulation and metabolism, leading to synovial inflammation, bone erosion and cartilage destruction in the patients’ joints. In addition, the resident synoviocytes of macrophage and fibroblast types can interact with innate and adaptive immune cells and contribute to the disease’s debilitating symptoms. Therefore, a detailed, mechanistic mapping of the molecular pathways and cellular crosstalks is essential to understand the complex biological processes and different disease manifestations. In this regard, we present the RA-Atlas, an SBGN-standardized, interactive, manually curated representation of existing knowledge related to the onset and progression of RA. This state-of-the-art RA-Atlas includes an updated version of the global RA-map covering relevant metabolic pathways and cell-specific molecular interaction maps for CD4+ Th1 cells, fibroblasts, and M1 and M2 macrophages. The molecular interaction maps were built using information extracted from published literature and pathway databases and enriched using omic data. The RA-Atlas is freely accessible on the webserver MINERVA (https://ramap.uni.lu/minerva/), allowing easy navigation using semantic zoom, cell-specific or experimental data overlay, gene set enrichment analysis, pathway export or drug query.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Mechanistic Cellular Atlas of the Rheumatic Joint\",\"authors\":\"Naouel Zerrouk, Sahar Aghakhani, Vidisha Singh, F. Augé, A. Niarakis\",\"doi\":\"10.3389/fsysb.2022.925791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rheumatoid Arthritis (RA) is an autoimmune disease of unknown aetiology involving complex interactions between environmental and genetic factors. Its pathogenesis is suspected to arise from intricate interplays between signalling, gene regulation and metabolism, leading to synovial inflammation, bone erosion and cartilage destruction in the patients’ joints. In addition, the resident synoviocytes of macrophage and fibroblast types can interact with innate and adaptive immune cells and contribute to the disease’s debilitating symptoms. Therefore, a detailed, mechanistic mapping of the molecular pathways and cellular crosstalks is essential to understand the complex biological processes and different disease manifestations. In this regard, we present the RA-Atlas, an SBGN-standardized, interactive, manually curated representation of existing knowledge related to the onset and progression of RA. This state-of-the-art RA-Atlas includes an updated version of the global RA-map covering relevant metabolic pathways and cell-specific molecular interaction maps for CD4+ Th1 cells, fibroblasts, and M1 and M2 macrophages. The molecular interaction maps were built using information extracted from published literature and pathway databases and enriched using omic data. The RA-Atlas is freely accessible on the webserver MINERVA (https://ramap.uni.lu/minerva/), allowing easy navigation using semantic zoom, cell-specific or experimental data overlay, gene set enrichment analysis, pathway export or drug query.\",\"PeriodicalId\":73109,\"journal\":{\"name\":\"Frontiers in systems biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsysb.2022.925791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2022.925791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

类风湿性关节炎(RA)是一种病因不明的自身免疫性疾病,涉及环境和遗传因素之间复杂的相互作用。其发病机制被怀疑是信号、基因调控和代谢之间复杂的相互作用,导致患者关节滑膜炎症、骨侵蚀和软骨破坏。此外,巨噬细胞和成纤维细胞类型的常驻滑膜细胞可以与先天和适应性免疫细胞相互作用,并有助于疾病的衰弱症状。因此,详细的分子通路和细胞串扰的机制映射对于理解复杂的生物学过程和不同的疾病表现至关重要。在这方面,我们提出了RA- atlas,这是一个sbgn标准化的,交互式的,人工策划的与RA的发病和进展相关的现有知识的表示。这个最先进的RA-Atlas包括全球RA-map的更新版本,涵盖CD4+ Th1细胞、成纤维细胞、M1和M2巨噬细胞的相关代谢途径和细胞特异性分子相互作用图。分子相互作用图谱是利用从已发表的文献和途径数据库中提取的信息构建的,并利用组学数据进行了丰富。RA-Atlas可以在MINERVA (https://ramap.uni.lu/minerva/)网站上免费访问,允许使用语义缩放,细胞特异性或实验数据覆盖,基因集富集分析,途径导出或药物查询轻松导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mechanistic Cellular Atlas of the Rheumatic Joint
Rheumatoid Arthritis (RA) is an autoimmune disease of unknown aetiology involving complex interactions between environmental and genetic factors. Its pathogenesis is suspected to arise from intricate interplays between signalling, gene regulation and metabolism, leading to synovial inflammation, bone erosion and cartilage destruction in the patients’ joints. In addition, the resident synoviocytes of macrophage and fibroblast types can interact with innate and adaptive immune cells and contribute to the disease’s debilitating symptoms. Therefore, a detailed, mechanistic mapping of the molecular pathways and cellular crosstalks is essential to understand the complex biological processes and different disease manifestations. In this regard, we present the RA-Atlas, an SBGN-standardized, interactive, manually curated representation of existing knowledge related to the onset and progression of RA. This state-of-the-art RA-Atlas includes an updated version of the global RA-map covering relevant metabolic pathways and cell-specific molecular interaction maps for CD4+ Th1 cells, fibroblasts, and M1 and M2 macrophages. The molecular interaction maps were built using information extracted from published literature and pathway databases and enriched using omic data. The RA-Atlas is freely accessible on the webserver MINERVA (https://ramap.uni.lu/minerva/), allowing easy navigation using semantic zoom, cell-specific or experimental data overlay, gene set enrichment analysis, pathway export or drug query.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信