{"title":"关于Sylow子群与B-子群的导出子群的置换性","authors":"E. V. Zubei","doi":"10.33581/2520-6508-2019-1-12-17","DOIUrl":null,"url":null,"abstract":"A finite non-nilpotent group G is called a B-group if every proper subgroup of the quotient group G/Φ(G) is nilpotent. We establish the r-solvability of the group in which some Sylow r-subgroup permutes with the derived subgroups of 2-nilpotent (or 2-closed) B-subgroups of even order and the solvability of the group in which the derived subgroups of 2-closed and 2-nilpotent B-subgroups of even order are permutable.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the permutability of Sylow subgroups with derived subgroups of B-subgroups\",\"authors\":\"E. V. Zubei\",\"doi\":\"10.33581/2520-6508-2019-1-12-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite non-nilpotent group G is called a B-group if every proper subgroup of the quotient group G/Φ(G) is nilpotent. We establish the r-solvability of the group in which some Sylow r-subgroup permutes with the derived subgroups of 2-nilpotent (or 2-closed) B-subgroups of even order and the solvability of the group in which the derived subgroups of 2-closed and 2-nilpotent B-subgroups of even order are permutable.\",\"PeriodicalId\":36323,\"journal\":{\"name\":\"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-6508-2019-1-12-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2019-1-12-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On the permutability of Sylow subgroups with derived subgroups of B-subgroups
A finite non-nilpotent group G is called a B-group if every proper subgroup of the quotient group G/Φ(G) is nilpotent. We establish the r-solvability of the group in which some Sylow r-subgroup permutes with the derived subgroups of 2-nilpotent (or 2-closed) B-subgroups of even order and the solvability of the group in which the derived subgroups of 2-closed and 2-nilpotent B-subgroups of even order are permutable.