{"title":"一类非线性扩散种群模型的局部近似解","authors":"Guangchong Yang, Xia Chen, L. Xiao","doi":"10.22771/NFAA.2021.26.01.06","DOIUrl":null,"url":null,"abstract":"This paper studies approximate solutions for a class of nonlinear diffusion population models. Our methods are to use the fundamental solution of heat equations to construct integral forms of the models and the well-known Banach compression map theorem to prove the existence of positive solutions of integral equations. Non-steady-state local approximate solutions for suitable harvest functions are obtained by utilizing the approximation theorem of multivariate continuous functions.","PeriodicalId":37534,"journal":{"name":"Nonlinear Functional Analysis and Applications","volume":"26 1","pages":"83-92"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LOCAL APPROXIMATE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION POPULATION MODELS\",\"authors\":\"Guangchong Yang, Xia Chen, L. Xiao\",\"doi\":\"10.22771/NFAA.2021.26.01.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies approximate solutions for a class of nonlinear diffusion population models. Our methods are to use the fundamental solution of heat equations to construct integral forms of the models and the well-known Banach compression map theorem to prove the existence of positive solutions of integral equations. Non-steady-state local approximate solutions for suitable harvest functions are obtained by utilizing the approximation theorem of multivariate continuous functions.\",\"PeriodicalId\":37534,\"journal\":{\"name\":\"Nonlinear Functional Analysis and Applications\",\"volume\":\"26 1\",\"pages\":\"83-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Functional Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22771/NFAA.2021.26.01.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Functional Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22771/NFAA.2021.26.01.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
LOCAL APPROXIMATE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION POPULATION MODELS
This paper studies approximate solutions for a class of nonlinear diffusion population models. Our methods are to use the fundamental solution of heat equations to construct integral forms of the models and the well-known Banach compression map theorem to prove the existence of positive solutions of integral equations. Non-steady-state local approximate solutions for suitable harvest functions are obtained by utilizing the approximation theorem of multivariate continuous functions.
期刊介绍:
The international mathematical journal NFAA will publish carefully selected original research papers on nonlinear functional analysis and applications, that is, ordinary differential equations, all kinds of partial differential equations, functional differential equations, integrodifferential equations, control theory, approximation theory, optimal control, optimization theory, numerical analysis, variational inequality, asymptotic behavior, fixed point theory, dynamic systems and complementarity problems. Papers for publication will be communicated and recommended by the members of the Editorial Board.