{"title":"分层自适应聚类抽样的方差估计","authors":"Uzma Yasmeen, Muhammad Noor-ul-Amin, M. Hanif","doi":"10.2478/stattrans-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract In many sampling surveys, the use of auxiliary information at either the design or estimation stage, or at both these stages is usual practice. Auxiliary information is commonly used to obtain improved designs and to achieve a high level of precision in the estimation of population density. Adaptive cluster sampling (ACS) was proposed to observe rare units with the purpose of obtaining highly precise estimations of rare and specially clustered populations in terms of least variances of the estimators. This sampling design proved to be more precise than its more conventional counterparts, including simple random sampling (SRS), stratified sampling, etc. In this paper, a generalised estimator is anticipated for a finite population variance with the use of information of an auxiliary variable under stratified adaptive cluster sampling (SACS). The bias and mean square error expressions of the recommended estimators are derived up to the first degree of approximation. A simulation study showed that the proposed estimators have the least estimated mean square error under the SACS technique in comparison to variance estimators in stratified sampling.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":"23 1","pages":"173 - 184"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance estimation in stratified adaptive cluster sampling\",\"authors\":\"Uzma Yasmeen, Muhammad Noor-ul-Amin, M. Hanif\",\"doi\":\"10.2478/stattrans-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In many sampling surveys, the use of auxiliary information at either the design or estimation stage, or at both these stages is usual practice. Auxiliary information is commonly used to obtain improved designs and to achieve a high level of precision in the estimation of population density. Adaptive cluster sampling (ACS) was proposed to observe rare units with the purpose of obtaining highly precise estimations of rare and specially clustered populations in terms of least variances of the estimators. This sampling design proved to be more precise than its more conventional counterparts, including simple random sampling (SRS), stratified sampling, etc. In this paper, a generalised estimator is anticipated for a finite population variance with the use of information of an auxiliary variable under stratified adaptive cluster sampling (SACS). The bias and mean square error expressions of the recommended estimators are derived up to the first degree of approximation. A simulation study showed that the proposed estimators have the least estimated mean square error under the SACS technique in comparison to variance estimators in stratified sampling.\",\"PeriodicalId\":37985,\"journal\":{\"name\":\"Statistics in Transition\",\"volume\":\"23 1\",\"pages\":\"173 - 184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/stattrans-2022-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Variance estimation in stratified adaptive cluster sampling
Abstract In many sampling surveys, the use of auxiliary information at either the design or estimation stage, or at both these stages is usual practice. Auxiliary information is commonly used to obtain improved designs and to achieve a high level of precision in the estimation of population density. Adaptive cluster sampling (ACS) was proposed to observe rare units with the purpose of obtaining highly precise estimations of rare and specially clustered populations in terms of least variances of the estimators. This sampling design proved to be more precise than its more conventional counterparts, including simple random sampling (SRS), stratified sampling, etc. In this paper, a generalised estimator is anticipated for a finite population variance with the use of information of an auxiliary variable under stratified adaptive cluster sampling (SACS). The bias and mean square error expressions of the recommended estimators are derived up to the first degree of approximation. A simulation study showed that the proposed estimators have the least estimated mean square error under the SACS technique in comparison to variance estimators in stratified sampling.
期刊介绍:
Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.