高斯过程的离散解耦不等式及其应用

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
S. Muirhead
{"title":"高斯过程的离散解耦不等式及其应用","authors":"S. Muirhead","doi":"10.1214/23-ejp994","DOIUrl":null,"url":null,"abstract":"We establish a sprinkled decoupling inequality for increasing events of Gaussian vectors with an error that depends only on the maximum pairwise correlation. As an application we prove the non-triviality of the percolation phase transition for Gaussian fields on $\\mathbb{Z}^d$ or $\\mathbb{R}^d$ with (i) uniformly bounded local suprema, and (ii) correlations which decay at least polylogarithmically in the distance with exponent $\\gamma>3$; this expands the scope of existing results on non-triviality of the phase transition, covering new examples such as non-stationary fields and monochromatic random waves.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A sprinkled decoupling inequality for Gaussian processes and applications\",\"authors\":\"S. Muirhead\",\"doi\":\"10.1214/23-ejp994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a sprinkled decoupling inequality for increasing events of Gaussian vectors with an error that depends only on the maximum pairwise correlation. As an application we prove the non-triviality of the percolation phase transition for Gaussian fields on $\\\\mathbb{Z}^d$ or $\\\\mathbb{R}^d$ with (i) uniformly bounded local suprema, and (ii) correlations which decay at least polylogarithmically in the distance with exponent $\\\\gamma>3$; this expands the scope of existing results on non-triviality of the phase transition, covering new examples such as non-stationary fields and monochromatic random waves.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp994\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp994","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们建立了高斯向量增加事件的散射解耦不等式,其误差仅取决于最大两两相关。作为一个应用,我们证明了高斯场在$\mathbb{Z}^d$或$\mathbb{R}^d$上的渗流相变的非平凡性,证明了(i)一致有界的局部上极值,以及(ii)在指数$\gamma>3$的距离上至少有多对数衰减的相关性;这扩大了现有相变非平凡性结果的范围,涵盖了新的例子,如非平稳场和单色随机波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sprinkled decoupling inequality for Gaussian processes and applications
We establish a sprinkled decoupling inequality for increasing events of Gaussian vectors with an error that depends only on the maximum pairwise correlation. As an application we prove the non-triviality of the percolation phase transition for Gaussian fields on $\mathbb{Z}^d$ or $\mathbb{R}^d$ with (i) uniformly bounded local suprema, and (ii) correlations which decay at least polylogarithmically in the distance with exponent $\gamma>3$; this expands the scope of existing results on non-triviality of the phase transition, covering new examples such as non-stationary fields and monochromatic random waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信