{"title":"基于数值模拟的大型射电望远镜场地防风林控制风流研究","authors":"Feilong He, Qian Xu, Na Wang","doi":"10.1155/2023/5257749","DOIUrl":null,"url":null,"abstract":"The higher the pointing accuracy of the radio telescope, the more obvious the influence of wind disturbance on antenna performance. Taking the site of the 110 m aperture QiTai radio Telescope (QTT) as an example, the terrain and air flow characteristics of the site are studied. It is found that the wind direction with high incoming wind frequency and relatively high speed is mostly located in the mountain gap on the periphery of the antenna. If the wind resistance facilities are precisely arranged in the upstream tuyere, the wind speed in the antenna area can be effectively reduced. This study proposes a method to control the wind flow at a telescope site based on the precise arrangement of the windbreak fence. The windbreak fence simulation model is constructed using the theory of porous jump. The mean error of the simulation results is less than 14% compared to the wind tunnel measured data, indicating that the constructed windbreak fence model has high reliability. The computational domain model of the working conditions for the site is constructed. The extreme condition of the windbreak fence arrangement is considered, and the simulation results show that the wind speed in the antenna area can be reduced by more than 30% through the control of the windbreak fence. It verifies the feasibility of the method of controlling the wind flow by the windbreak fence for the site which provides a reference for the subsequent research on the precise arrangement of the windbreak fence.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Wind Flow Control by Windbreak Fence for a Large Radio Telescope Site Based on Numerical Simulations\",\"authors\":\"Feilong He, Qian Xu, Na Wang\",\"doi\":\"10.1155/2023/5257749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The higher the pointing accuracy of the radio telescope, the more obvious the influence of wind disturbance on antenna performance. Taking the site of the 110 m aperture QiTai radio Telescope (QTT) as an example, the terrain and air flow characteristics of the site are studied. It is found that the wind direction with high incoming wind frequency and relatively high speed is mostly located in the mountain gap on the periphery of the antenna. If the wind resistance facilities are precisely arranged in the upstream tuyere, the wind speed in the antenna area can be effectively reduced. This study proposes a method to control the wind flow at a telescope site based on the precise arrangement of the windbreak fence. The windbreak fence simulation model is constructed using the theory of porous jump. The mean error of the simulation results is less than 14% compared to the wind tunnel measured data, indicating that the constructed windbreak fence model has high reliability. The computational domain model of the working conditions for the site is constructed. The extreme condition of the windbreak fence arrangement is considered, and the simulation results show that the wind speed in the antenna area can be reduced by more than 30% through the control of the windbreak fence. It verifies the feasibility of the method of controlling the wind flow by the windbreak fence for the site which provides a reference for the subsequent research on the precise arrangement of the windbreak fence.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5257749\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/5257749","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Research on Wind Flow Control by Windbreak Fence for a Large Radio Telescope Site Based on Numerical Simulations
The higher the pointing accuracy of the radio telescope, the more obvious the influence of wind disturbance on antenna performance. Taking the site of the 110 m aperture QiTai radio Telescope (QTT) as an example, the terrain and air flow characteristics of the site are studied. It is found that the wind direction with high incoming wind frequency and relatively high speed is mostly located in the mountain gap on the periphery of the antenna. If the wind resistance facilities are precisely arranged in the upstream tuyere, the wind speed in the antenna area can be effectively reduced. This study proposes a method to control the wind flow at a telescope site based on the precise arrangement of the windbreak fence. The windbreak fence simulation model is constructed using the theory of porous jump. The mean error of the simulation results is less than 14% compared to the wind tunnel measured data, indicating that the constructed windbreak fence model has high reliability. The computational domain model of the working conditions for the site is constructed. The extreme condition of the windbreak fence arrangement is considered, and the simulation results show that the wind speed in the antenna area can be reduced by more than 30% through the control of the windbreak fence. It verifies the feasibility of the method of controlling the wind flow by the windbreak fence for the site which provides a reference for the subsequent research on the precise arrangement of the windbreak fence.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.