{"title":"生存数据的因果中介:基于GLM的统一方法","authors":"Marcelo M. Taddeo, L. Amorim","doi":"10.15446/rce.v45n1.94553","DOIUrl":null,"url":null,"abstract":"Mediation analysis has been receiving much attention from the scientific community in the last years, mainly due to its ability to disentangle causal pathways from exposures to outcomes. Particularly, causal mediation analysis for time-to-event outcomes has been widely discussed using accelerated failures times, Cox and Aalen models, with continuous or binary mediator. We derive general expressions for the Natural Direct Effect and Natural Indirect Effect for the time-to-event outcome when the mediator is modeled using generalized linear models, which includes existing procedures as particular cases. We also define a responsiveness measure to assess the variations in continuous exposures in the presence of ediation. We consider a community-based prospective cohort study that investigates the mediation of hepatitis B in the relationship between hepatitis C and liver cancer. We fit different models as well as distinct distributions and link functions associated to the mediator. We also notice that estimation of NDE and NIE using different models leads to non-contradictory conclusions despite their effect scales. The survival models provide a compelling framework that is appropriate to answer many research questions involving causal mediation analysis. The extensions through GLMs for the mediator may encompassa broad field of medical research, allowing the often necessary control for confounding.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Mediation for Survival Data: A Unifying Approach via GLM\",\"authors\":\"Marcelo M. Taddeo, L. Amorim\",\"doi\":\"10.15446/rce.v45n1.94553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mediation analysis has been receiving much attention from the scientific community in the last years, mainly due to its ability to disentangle causal pathways from exposures to outcomes. Particularly, causal mediation analysis for time-to-event outcomes has been widely discussed using accelerated failures times, Cox and Aalen models, with continuous or binary mediator. We derive general expressions for the Natural Direct Effect and Natural Indirect Effect for the time-to-event outcome when the mediator is modeled using generalized linear models, which includes existing procedures as particular cases. We also define a responsiveness measure to assess the variations in continuous exposures in the presence of ediation. We consider a community-based prospective cohort study that investigates the mediation of hepatitis B in the relationship between hepatitis C and liver cancer. We fit different models as well as distinct distributions and link functions associated to the mediator. We also notice that estimation of NDE and NIE using different models leads to non-contradictory conclusions despite their effect scales. The survival models provide a compelling framework that is appropriate to answer many research questions involving causal mediation analysis. The extensions through GLMs for the mediator may encompassa broad field of medical research, allowing the often necessary control for confounding.\",\"PeriodicalId\":54477,\"journal\":{\"name\":\"Revista Colombiana De Estadistica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana De Estadistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/rce.v45n1.94553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rce.v45n1.94553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Causal Mediation for Survival Data: A Unifying Approach via GLM
Mediation analysis has been receiving much attention from the scientific community in the last years, mainly due to its ability to disentangle causal pathways from exposures to outcomes. Particularly, causal mediation analysis for time-to-event outcomes has been widely discussed using accelerated failures times, Cox and Aalen models, with continuous or binary mediator. We derive general expressions for the Natural Direct Effect and Natural Indirect Effect for the time-to-event outcome when the mediator is modeled using generalized linear models, which includes existing procedures as particular cases. We also define a responsiveness measure to assess the variations in continuous exposures in the presence of ediation. We consider a community-based prospective cohort study that investigates the mediation of hepatitis B in the relationship between hepatitis C and liver cancer. We fit different models as well as distinct distributions and link functions associated to the mediator. We also notice that estimation of NDE and NIE using different models leads to non-contradictory conclusions despite their effect scales. The survival models provide a compelling framework that is appropriate to answer many research questions involving causal mediation analysis. The extensions through GLMs for the mediator may encompassa broad field of medical research, allowing the often necessary control for confounding.
期刊介绍:
The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication.
The Editorial Committee assumes that the works submitted for evaluation
have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.