基于本体的细粒度情感分析的智能产品再设计策略

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Siyu Zhu, Jin Qi, Jie Hu, Haiqing Huang
{"title":"基于本体的细粒度情感分析的智能产品再设计策略","authors":"Siyu Zhu, Jin Qi, Jie Hu, Haiqing Huang","doi":"10.1017/S0890060421000147","DOIUrl":null,"url":null,"abstract":"Abstract With the increasing demand for a personalized product and rapid market response, many companies expect to explore online user-generated content (UGC) for intelligent customer hearing and product redesign strategy. UGC has the advantages of being more unbiased than traditional interviews, yielding in-time response, and widely accessible with a sheer volume. From online resources, customers’ preferences toward various aspects of the product can be exploited by promising sentiment analysis methods. However, due to the complexity of language, state-of-the-art sentiment analysis methods are still not accurate for practice use in product redesign. To tackle this problem, we propose an integrated customer hearing and product redesign system, which combines the robust use of sentiment analysis for customer hearing and coordinated redesign mechanisms. Ontology and expert knowledges are involved to promote the accuracy. Specifically, a fuzzy product ontology that contains domain knowledges is first learned in a semi-supervised way. Then, UGC is exploited with a novel ontology-based fine-grained sentiment analysis approach. Extracted customer preference statistics are transformed into multilevels, for the automatic establishment of opportunity landscapes and house of quality table. Besides, customer preference statistics are interactively visualized, through which representative customer feedbacks are concurrently generated. Through a case study of smartphone, the effectiveness of the proposed system is validated, and applicable redesign strategies for a case product are provided. With this system, information including customer preferences, user experiences, using habits and conditions can be exploited together for reliable product redesign strategy elicitation.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"35 1","pages":"295 - 315"},"PeriodicalIF":1.7000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0890060421000147","citationCount":"4","resultStr":"{\"title\":\"Intelligent product redesign strategy with ontology-based fine-grained sentiment analysis\",\"authors\":\"Siyu Zhu, Jin Qi, Jie Hu, Haiqing Huang\",\"doi\":\"10.1017/S0890060421000147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the increasing demand for a personalized product and rapid market response, many companies expect to explore online user-generated content (UGC) for intelligent customer hearing and product redesign strategy. UGC has the advantages of being more unbiased than traditional interviews, yielding in-time response, and widely accessible with a sheer volume. From online resources, customers’ preferences toward various aspects of the product can be exploited by promising sentiment analysis methods. However, due to the complexity of language, state-of-the-art sentiment analysis methods are still not accurate for practice use in product redesign. To tackle this problem, we propose an integrated customer hearing and product redesign system, which combines the robust use of sentiment analysis for customer hearing and coordinated redesign mechanisms. Ontology and expert knowledges are involved to promote the accuracy. Specifically, a fuzzy product ontology that contains domain knowledges is first learned in a semi-supervised way. Then, UGC is exploited with a novel ontology-based fine-grained sentiment analysis approach. Extracted customer preference statistics are transformed into multilevels, for the automatic establishment of opportunity landscapes and house of quality table. Besides, customer preference statistics are interactively visualized, through which representative customer feedbacks are concurrently generated. Through a case study of smartphone, the effectiveness of the proposed system is validated, and applicable redesign strategies for a case product are provided. With this system, information including customer preferences, user experiences, using habits and conditions can be exploited together for reliable product redesign strategy elicitation.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\"35 1\",\"pages\":\"295 - 315\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0890060421000147\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060421000147\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060421000147","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

随着人们对个性化产品和快速市场反应的需求日益增加,许多企业希望探索在线用户生成内容(UGC),以实现智能客户听证和产品再设计策略。UGC的优点是比传统的采访更公正,能及时得到回应,而且可以广泛获取。从在线资源中,客户对产品各个方面的偏好可以通过有前途的情感分析方法来利用。然而,由于语言的复杂性,目前最先进的情感分析方法在产品再设计的实践中仍然不够准确。为了解决这一问题,我们提出了一个集成的客户听证和产品再设计系统,该系统结合了对客户听证的情感分析和协调再设计机制的强大使用。利用本体和专家知识来提高准确率。具体而言,首先以半监督的方式学习包含领域知识的模糊产品本体。然后,利用一种新颖的基于本体的细粒度情感分析方法来利用UGC。将提取的客户偏好统计数据转化为多层次,用于自动建立机会景观和房屋质量表。并对客户偏好统计数据进行交互式可视化,同时生成具有代表性的客户反馈。通过智能手机的案例研究,验证了所提出的系统的有效性,并提供了适用于案例产品的再设计策略。有了这个系统,包括客户偏好、用户体验、使用习惯和条件在内的信息可以一起被利用,以获得可靠的产品重新设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent product redesign strategy with ontology-based fine-grained sentiment analysis
Abstract With the increasing demand for a personalized product and rapid market response, many companies expect to explore online user-generated content (UGC) for intelligent customer hearing and product redesign strategy. UGC has the advantages of being more unbiased than traditional interviews, yielding in-time response, and widely accessible with a sheer volume. From online resources, customers’ preferences toward various aspects of the product can be exploited by promising sentiment analysis methods. However, due to the complexity of language, state-of-the-art sentiment analysis methods are still not accurate for practice use in product redesign. To tackle this problem, we propose an integrated customer hearing and product redesign system, which combines the robust use of sentiment analysis for customer hearing and coordinated redesign mechanisms. Ontology and expert knowledges are involved to promote the accuracy. Specifically, a fuzzy product ontology that contains domain knowledges is first learned in a semi-supervised way. Then, UGC is exploited with a novel ontology-based fine-grained sentiment analysis approach. Extracted customer preference statistics are transformed into multilevels, for the automatic establishment of opportunity landscapes and house of quality table. Besides, customer preference statistics are interactively visualized, through which representative customer feedbacks are concurrently generated. Through a case study of smartphone, the effectiveness of the proposed system is validated, and applicable redesign strategies for a case product are provided. With this system, information including customer preferences, user experiences, using habits and conditions can be exploited together for reliable product redesign strategy elicitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信