经典(共)递归:力学

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
P. Downen, Z. M. Ariola
{"title":"经典(共)递归:力学","authors":"P. Downen, Z. M. Ariola","doi":"10.1017/S0956796822000168","DOIUrl":null,"url":null,"abstract":"Abstract Recursion is a mature, well-understood topic in the theory and practice of programming. Yet its dual, corecursion is underappreciated and still seen as exotic. We aim to put them both on equal footing by giving a foundation for primitive corecursion based on computation, giving a terminating calculus analogous to the original computational foundation of recursion. We show how the implementation details in an abstract machine strengthens their connection, syntactically deriving corecursion from recursion via logical duality. We also observe the impact of evaluation strategy on the computational complexity of primitive (co)recursive combinators: call-by-name allows for more efficient recursion, but call-by-value allows for more efficient corecursion.","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":"33 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical (co)recursion: Mechanics\",\"authors\":\"P. Downen, Z. M. Ariola\",\"doi\":\"10.1017/S0956796822000168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recursion is a mature, well-understood topic in the theory and practice of programming. Yet its dual, corecursion is underappreciated and still seen as exotic. We aim to put them both on equal footing by giving a foundation for primitive corecursion based on computation, giving a terminating calculus analogous to the original computational foundation of recursion. We show how the implementation details in an abstract machine strengthens their connection, syntactically deriving corecursion from recursion via logical duality. We also observe the impact of evaluation strategy on the computational complexity of primitive (co)recursive combinators: call-by-name allows for more efficient recursion, but call-by-value allows for more efficient corecursion.\",\"PeriodicalId\":15874,\"journal\":{\"name\":\"Journal of Functional Programming\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0956796822000168\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0956796822000168","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要递归是编程理论和实践中一个成熟的、被广泛理解的话题。然而,它的双重共草书却被低估了,仍然被视为异国情调。我们的目标是通过为基于计算的原始共运算提供基础,并提供类似于递归的原始计算基础的终止演算,使它们处于平等的地位。我们展示了抽象机器中的实现细节是如何加强它们之间的联系的,通过逻辑对偶从递归中语法推导出同体。我们还观察到评估策略对基元(共)递归组合子计算复杂性的影响:按名称调用可以实现更高效的递归,但按值调用可以实现更有效率的共递归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical (co)recursion: Mechanics
Abstract Recursion is a mature, well-understood topic in the theory and practice of programming. Yet its dual, corecursion is underappreciated and still seen as exotic. We aim to put them both on equal footing by giving a foundation for primitive corecursion based on computation, giving a terminating calculus analogous to the original computational foundation of recursion. We show how the implementation details in an abstract machine strengthens their connection, syntactically deriving corecursion from recursion via logical duality. We also observe the impact of evaluation strategy on the computational complexity of primitive (co)recursive combinators: call-by-name allows for more efficient recursion, but call-by-value allows for more efficient corecursion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Programming
Journal of Functional Programming 工程技术-计算机:软件工程
CiteScore
1.70
自引率
0.00%
发文量
9
审稿时长
>12 weeks
期刊介绍: Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信