对称多量子位系统中的量子相关性

IF 1.8 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
A. R. Usha Devi,  Sudha, I. Reena, H. S. Karthik, A. K. Rajagopal
{"title":"对称多量子位系统中的量子相关性","authors":"A. R. Usha Devi,&nbsp; Sudha,&nbsp;I. Reena,&nbsp;H. S. Karthik,&nbsp;A. K. Rajagopal","doi":"10.1007/s41745-022-00323-y","DOIUrl":null,"url":null,"abstract":"<div><p>Permutation symmetric multiqubit quantum states draw attention due to their experimental feasibility and for the mathematical elegance offered by them. This class of states belong to the <span>\\(d=2j+1=N+1\\)</span> dimensional subspace of the <span>\\(2^{N}\\)</span> dimensional Hilbert space of <i>N</i> qubits, which corresponds to the maximum value <span>\\(j=N/2\\)</span> of the angular momentum of <i>N</i> constituent spin-<span>\\(\\frac{1}{2}\\)</span> (qubit) systems. In this article, we review quantum correlations in permutation symmetric multiqubit states via (i) local unitary invariants, pairwise entanglement and spin squeezing (ii) entanglement characterization using covariance matrix (iii) local sum uncertainty relations (LSUR) for symmetric multiqubit systems (iv) Majorana geometric representation of pure symmetric multiqubit states (v) canonical forms of pure symmetric states under stochastic local operations and classical communications (SLOCC).</p></div>","PeriodicalId":675,"journal":{"name":"Journal of the Indian Institute of Science","volume":"103 2","pages":"419 - 447"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Correlations in Symmetric Multiqubit Systems\",\"authors\":\"A. R. Usha Devi,&nbsp; Sudha,&nbsp;I. Reena,&nbsp;H. S. Karthik,&nbsp;A. K. Rajagopal\",\"doi\":\"10.1007/s41745-022-00323-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Permutation symmetric multiqubit quantum states draw attention due to their experimental feasibility and for the mathematical elegance offered by them. This class of states belong to the <span>\\\\(d=2j+1=N+1\\\\)</span> dimensional subspace of the <span>\\\\(2^{N}\\\\)</span> dimensional Hilbert space of <i>N</i> qubits, which corresponds to the maximum value <span>\\\\(j=N/2\\\\)</span> of the angular momentum of <i>N</i> constituent spin-<span>\\\\(\\\\frac{1}{2}\\\\)</span> (qubit) systems. In this article, we review quantum correlations in permutation symmetric multiqubit states via (i) local unitary invariants, pairwise entanglement and spin squeezing (ii) entanglement characterization using covariance matrix (iii) local sum uncertainty relations (LSUR) for symmetric multiqubit systems (iv) Majorana geometric representation of pure symmetric multiqubit states (v) canonical forms of pure symmetric states under stochastic local operations and classical communications (SLOCC).</p></div>\",\"PeriodicalId\":675,\"journal\":{\"name\":\"Journal of the Indian Institute of Science\",\"volume\":\"103 2\",\"pages\":\"419 - 447\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Institute of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41745-022-00323-y\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Institute of Science","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s41745-022-00323-y","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

排列对称多量子位量子态因其实验可行性和数学上的优美性而受到关注。这类状态属于N个量子比特的\(2^{N}\)维希尔伯特空间的\(d=2j+1=N+1\)维子空间,对应于N个组成自旋- \(\frac{1}{2}\)(量子比特)系统的角动量最大值\(j=N/2\)。在本文中,我们通过(i)局部幺正不变量、配对纠缠和自旋压缩(ii)使用协方差矩阵的纠缠表征(iii)对称多量子位系统的局部和不确定性关系(LSUR) (iv)纯对称多量子位态的Majorana几何表示(v)随机局部操作和经典通信(SLOCC)下纯对称态的规范形式来回顾排列对称多量子位态中的量子相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Correlations in Symmetric Multiqubit Systems

Permutation symmetric multiqubit quantum states draw attention due to their experimental feasibility and for the mathematical elegance offered by them. This class of states belong to the \(d=2j+1=N+1\) dimensional subspace of the \(2^{N}\) dimensional Hilbert space of N qubits, which corresponds to the maximum value \(j=N/2\) of the angular momentum of N constituent spin-\(\frac{1}{2}\) (qubit) systems. In this article, we review quantum correlations in permutation symmetric multiqubit states via (i) local unitary invariants, pairwise entanglement and spin squeezing (ii) entanglement characterization using covariance matrix (iii) local sum uncertainty relations (LSUR) for symmetric multiqubit systems (iv) Majorana geometric representation of pure symmetric multiqubit states (v) canonical forms of pure symmetric states under stochastic local operations and classical communications (SLOCC).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Indian Institute of Science
Journal of the Indian Institute of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
4.30
自引率
0.00%
发文量
75
期刊介绍: Started in 1914 as the second scientific journal to be published from India, the Journal of the Indian Institute of Science became a multidisciplinary reviews journal covering all disciplines of science, engineering and technology in 2007. Since then each issue is devoted to a specific topic of contemporary research interest and guest-edited by eminent researchers. Authors selected by the Guest Editor(s) and/or the Editorial Board are invited to submit their review articles; each issue is expected to serve as a state-of-the-art review of a topic from multiple viewpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信