径向密度等周不等式的极限情况及其应用

IF 0.7 4区 数学 Q2 MATHEMATICS
Georgios Psaradakis
{"title":"径向密度等周不等式的极限情况及其应用","authors":"Georgios Psaradakis","doi":"10.4310/cag.2022.v30.n6.a6","DOIUrl":null,"url":null,"abstract":"We prove a sharp isoperimetric inequality with radial density whose functional counterpart corresponds to a limiting case for the exponents of the Il'in (or Caffarelli-Kohn-Nirenberg) inequality in L 1. We show how the latter applies to obtain an optimal critical Sobolev weighted norm improvement to one of the L 1 weighted Hardy inequalities of [25]. Further applications include an L p version with the best constant of the functional analogue of this isoperimetric inequality and also a weighted Polya-Szego inequality.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting case of an isoperimetric inequality with radial densities and applications\",\"authors\":\"Georgios Psaradakis\",\"doi\":\"10.4310/cag.2022.v30.n6.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a sharp isoperimetric inequality with radial density whose functional counterpart corresponds to a limiting case for the exponents of the Il'in (or Caffarelli-Kohn-Nirenberg) inequality in L 1. We show how the latter applies to obtain an optimal critical Sobolev weighted norm improvement to one of the L 1 weighted Hardy inequalities of [25]. Further applications include an L p version with the best constant of the functional analogue of this isoperimetric inequality and also a weighted Polya-Szego inequality.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2022.v30.n6.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n6.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个具有径向密度的尖锐等周不等式,其函数对偶对应于L 1中Il'in(或Caffarelli-Kohn-Nirenberg)不等式指数的极限情况。我们展示了后者如何应用于[25]的L 1加权Hardy不等式之一的最优临界Sobolev加权范数改进。进一步的应用包括具有该等环不等式的最佳常数的泛函类似的L - p版本以及加权的Polya-Szego不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limiting case of an isoperimetric inequality with radial densities and applications
We prove a sharp isoperimetric inequality with radial density whose functional counterpart corresponds to a limiting case for the exponents of the Il'in (or Caffarelli-Kohn-Nirenberg) inequality in L 1. We show how the latter applies to obtain an optimal critical Sobolev weighted norm improvement to one of the L 1 weighted Hardy inequalities of [25]. Further applications include an L p version with the best constant of the functional analogue of this isoperimetric inequality and also a weighted Polya-Szego inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信