{"title":"径向密度等周不等式的极限情况及其应用","authors":"Georgios Psaradakis","doi":"10.4310/cag.2022.v30.n6.a6","DOIUrl":null,"url":null,"abstract":"We prove a sharp isoperimetric inequality with radial density whose functional counterpart corresponds to a limiting case for the exponents of the Il'in (or Caffarelli-Kohn-Nirenberg) inequality in L 1. We show how the latter applies to obtain an optimal critical Sobolev weighted norm improvement to one of the L 1 weighted Hardy inequalities of [25]. Further applications include an L p version with the best constant of the functional analogue of this isoperimetric inequality and also a weighted Polya-Szego inequality.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting case of an isoperimetric inequality with radial densities and applications\",\"authors\":\"Georgios Psaradakis\",\"doi\":\"10.4310/cag.2022.v30.n6.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a sharp isoperimetric inequality with radial density whose functional counterpart corresponds to a limiting case for the exponents of the Il'in (or Caffarelli-Kohn-Nirenberg) inequality in L 1. We show how the latter applies to obtain an optimal critical Sobolev weighted norm improvement to one of the L 1 weighted Hardy inequalities of [25]. Further applications include an L p version with the best constant of the functional analogue of this isoperimetric inequality and also a weighted Polya-Szego inequality.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2022.v30.n6.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n6.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Limiting case of an isoperimetric inequality with radial densities and applications
We prove a sharp isoperimetric inequality with radial density whose functional counterpart corresponds to a limiting case for the exponents of the Il'in (or Caffarelli-Kohn-Nirenberg) inequality in L 1. We show how the latter applies to obtain an optimal critical Sobolev weighted norm improvement to one of the L 1 weighted Hardy inequalities of [25]. Further applications include an L p version with the best constant of the functional analogue of this isoperimetric inequality and also a weighted Polya-Szego inequality.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.