弹性成像反问题杨氏模量的非线性共轭梯度辨识方法

IF 1.1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
Talaat Abdelhamid, Rongliang Chen, M. Alam
{"title":"弹性成像反问题杨氏模量的非线性共轭梯度辨识方法","authors":"Talaat Abdelhamid, Rongliang Chen, M. Alam","doi":"10.1080/17415977.2021.1905638","DOIUrl":null,"url":null,"abstract":"Application of elasticity imaging inverse problem to identify Young's modulus in the elasticity problems in human's life is an interesting research area. In this study, we identify the modulus of elasticity for solving elasticity imaging inverse problem using a modified output least-squares method. Numerical convergence in the displacements of the direct problem for elasticity is investigated. To study the elasticity imaging inverse problem in an optimization framework, we utilize the sensitivity and adjoint problems to conceptualize a new model for computing the gradient of the minimizer. Discrete formulae in the model are then used to devise a scheme for an efficient computation gradient of the modified output least-squares objective function using the nonlinear conjugate gradient method. Numerical experiments demonstrate the effectiveness of the proposed technique.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"2165 - 2185"},"PeriodicalIF":1.1000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1905638","citationCount":"2","resultStr":"{\"title\":\"Nonlinear conjugate gradient method for identifying Young's modulus of the elasticity imaging inverse problem\",\"authors\":\"Talaat Abdelhamid, Rongliang Chen, M. Alam\",\"doi\":\"10.1080/17415977.2021.1905638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of elasticity imaging inverse problem to identify Young's modulus in the elasticity problems in human's life is an interesting research area. In this study, we identify the modulus of elasticity for solving elasticity imaging inverse problem using a modified output least-squares method. Numerical convergence in the displacements of the direct problem for elasticity is investigated. To study the elasticity imaging inverse problem in an optimization framework, we utilize the sensitivity and adjoint problems to conceptualize a new model for computing the gradient of the minimizer. Discrete formulae in the model are then used to devise a scheme for an efficient computation gradient of the modified output least-squares objective function using the nonlinear conjugate gradient method. Numerical experiments demonstrate the effectiveness of the proposed technique.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"2165 - 2185\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2021.1905638\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1905638\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1905638","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

应用弹性成像逆问题来识别杨氏模量在人类生活中的弹性问题中是一个有趣的研究领域。在这项研究中,我们使用一种改进的输出最小二乘法来确定弹性成像逆问题的弹性模量。研究了弹性力学直接问题位移的数值收敛性。为了在优化框架下研究弹性成像逆问题,我们利用灵敏度和伴随问题来概念化一个计算极小值梯度的新模型。然后,使用模型中的离散公式,使用非线性共轭梯度方法,设计了一种有效计算修正输出最小二乘目标函数梯度的方案。数值实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear conjugate gradient method for identifying Young's modulus of the elasticity imaging inverse problem
Application of elasticity imaging inverse problem to identify Young's modulus in the elasticity problems in human's life is an interesting research area. In this study, we identify the modulus of elasticity for solving elasticity imaging inverse problem using a modified output least-squares method. Numerical convergence in the displacements of the direct problem for elasticity is investigated. To study the elasticity imaging inverse problem in an optimization framework, we utilize the sensitivity and adjoint problems to conceptualize a new model for computing the gradient of the minimizer. Discrete formulae in the model are then used to devise a scheme for an efficient computation gradient of the modified output least-squares objective function using the nonlinear conjugate gradient method. Numerical experiments demonstrate the effectiveness of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems in Science and Engineering
Inverse Problems in Science and Engineering 工程技术-工程:综合
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome. Topics include: -Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks). -Material properties: determination of physical properties of media. -Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.). -Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.). -Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信