光学显微镜成像的超分辨率大景深模型

IF 1.8 4区 物理与天体物理 Q3 OPTICS
Ruo-Peng Zheng, Shu-Bin Liu, Lei Li
{"title":"光学显微镜成像的超分辨率大景深模型","authors":"Ruo-Peng Zheng, Shu-Bin Liu, Lei Li","doi":"10.1155/2021/6493130","DOIUrl":null,"url":null,"abstract":"Due to the limitation of numerical aperture (NA) in a microscope, it is very difficult to obtain a clear image of the specimen with a large depth of field (DOF). We propose a deep learning network model to simultaneously improve the imaging resolution and DOF of optical microscopes. The proposed M-Deblurgan consists of three parts: (i) a deblurring module equipped with an encoder-decoder network for feature extraction, (ii) an optimal approximation module to reduce the error propagation between the two tasks, and (iii) an SR module to super-resolve the image from the output of the optimal approximation module. The experimental results show that the proposed network model reaches the optimal result. The peak signal-to-noise ratio (PSNR) of the method can reach 37.5326, and the structural similarity (SSIM) can reach 0.9551 in the experimental dataset. The method can also be used in other potential applications, such as microscopes, mobile cameras, and telescopes.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Resolution and Large Depth of Field Model for Optical Microscope Imaging\",\"authors\":\"Ruo-Peng Zheng, Shu-Bin Liu, Lei Li\",\"doi\":\"10.1155/2021/6493130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the limitation of numerical aperture (NA) in a microscope, it is very difficult to obtain a clear image of the specimen with a large depth of field (DOF). We propose a deep learning network model to simultaneously improve the imaging resolution and DOF of optical microscopes. The proposed M-Deblurgan consists of three parts: (i) a deblurring module equipped with an encoder-decoder network for feature extraction, (ii) an optimal approximation module to reduce the error propagation between the two tasks, and (iii) an SR module to super-resolve the image from the output of the optimal approximation module. The experimental results show that the proposed network model reaches the optimal result. The peak signal-to-noise ratio (PSNR) of the method can reach 37.5326, and the structural similarity (SSIM) can reach 0.9551 in the experimental dataset. The method can also be used in other potential applications, such as microscopes, mobile cameras, and telescopes.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6493130\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6493130","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

由于显微镜数值孔径(NA)的限制,在大景深(DOF)下很难获得清晰的样品图像。为了同时提高光学显微镜的成像分辨率和DOF,我们提出了一种深度学习网络模型。所提出的M-Deblurgan由三部分组成:(i)配备用于特征提取的编码器-解码器网络的去模糊模块,(ii)用于减少两个任务之间误差传播的最优逼近模块,以及(iii)用于从最优逼近模块的输出超分辨图像的SR模块。实验结果表明,所提出的网络模型达到了最优结果。在实验数据集中,该方法的峰值信噪比(PSNR)可达37.5326,结构相似度(SSIM)可达0.9551。该方法也可用于其他潜在的应用,如显微镜、移动相机和望远镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-Resolution and Large Depth of Field Model for Optical Microscope Imaging
Due to the limitation of numerical aperture (NA) in a microscope, it is very difficult to obtain a clear image of the specimen with a large depth of field (DOF). We propose a deep learning network model to simultaneously improve the imaging resolution and DOF of optical microscopes. The proposed M-Deblurgan consists of three parts: (i) a deblurring module equipped with an encoder-decoder network for feature extraction, (ii) an optimal approximation module to reduce the error propagation between the two tasks, and (iii) an SR module to super-resolve the image from the output of the optimal approximation module. The experimental results show that the proposed network model reaches the optimal result. The peak signal-to-noise ratio (PSNR) of the method can reach 37.5326, and the structural similarity (SSIM) can reach 0.9551 in the experimental dataset. The method can also be used in other potential applications, such as microscopes, mobile cameras, and telescopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信