{"title":"苎麻纤维在环氧碳纳米管基体上杂交改善油棕空果束复合材料力学性能","authors":"Praswasti Pembangun Dyah Kencana Wulan, Yogi Yolanda","doi":"10.1515/secm-2022-0198","DOIUrl":null,"url":null,"abstract":"Abstract Oil palm empty fruit bunches (OPEFBs) can be transformed into composite boards with higher selling value when their cellulose is used as a fiber. Manufacturing composites with hybridization techniques can improve their properties. This study combined OPEFBs and ramie fibers in an epoxy–carbon nanotube (CNT) matrix. The proportion of OPEFBs and ramie fibers was varied (3:7, 5:5, and 7:3), with a total fiber content of 10% by volume and a matrix of 90% by volume. Alkali treatment using NaOH solution was applied to the fiber to remove impurities from the surface. CNTs were functionalized using nitric acid followed by hydrogen peroxide to improve compatibility. Surface treatment was conducted on fibers and CNTs to increase the bonds between these components in the composite material. The hybridization of OPEFBs/ramie fibers improved the tensile strength in the 3:7TR, 5:5TR, and 7:3TR composites by 127, 37, and 12%, respectively, compared to the 10T composite. The flexural strength of the 5:5TR hybrid composite increased by 120%, and that of the 3:7TR and 7:3TR composites increased by 83% against the 10R composite. The 3:7TR hybrid composite showed the best mechanical properties.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical property improvement of oil palm empty fruit bunch composites by hybridization using ramie fibers on epoxy–CNT matrices\",\"authors\":\"Praswasti Pembangun Dyah Kencana Wulan, Yogi Yolanda\",\"doi\":\"10.1515/secm-2022-0198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Oil palm empty fruit bunches (OPEFBs) can be transformed into composite boards with higher selling value when their cellulose is used as a fiber. Manufacturing composites with hybridization techniques can improve their properties. This study combined OPEFBs and ramie fibers in an epoxy–carbon nanotube (CNT) matrix. The proportion of OPEFBs and ramie fibers was varied (3:7, 5:5, and 7:3), with a total fiber content of 10% by volume and a matrix of 90% by volume. Alkali treatment using NaOH solution was applied to the fiber to remove impurities from the surface. CNTs were functionalized using nitric acid followed by hydrogen peroxide to improve compatibility. Surface treatment was conducted on fibers and CNTs to increase the bonds between these components in the composite material. The hybridization of OPEFBs/ramie fibers improved the tensile strength in the 3:7TR, 5:5TR, and 7:3TR composites by 127, 37, and 12%, respectively, compared to the 10T composite. The flexural strength of the 5:5TR hybrid composite increased by 120%, and that of the 3:7TR and 7:3TR composites increased by 83% against the 10R composite. The 3:7TR hybrid composite showed the best mechanical properties.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0198\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0198","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Mechanical property improvement of oil palm empty fruit bunch composites by hybridization using ramie fibers on epoxy–CNT matrices
Abstract Oil palm empty fruit bunches (OPEFBs) can be transformed into composite boards with higher selling value when their cellulose is used as a fiber. Manufacturing composites with hybridization techniques can improve their properties. This study combined OPEFBs and ramie fibers in an epoxy–carbon nanotube (CNT) matrix. The proportion of OPEFBs and ramie fibers was varied (3:7, 5:5, and 7:3), with a total fiber content of 10% by volume and a matrix of 90% by volume. Alkali treatment using NaOH solution was applied to the fiber to remove impurities from the surface. CNTs were functionalized using nitric acid followed by hydrogen peroxide to improve compatibility. Surface treatment was conducted on fibers and CNTs to increase the bonds between these components in the composite material. The hybridization of OPEFBs/ramie fibers improved the tensile strength in the 3:7TR, 5:5TR, and 7:3TR composites by 127, 37, and 12%, respectively, compared to the 10T composite. The flexural strength of the 5:5TR hybrid composite increased by 120%, and that of the 3:7TR and 7:3TR composites increased by 83% against the 10R composite. The 3:7TR hybrid composite showed the best mechanical properties.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.