A. M. Gorlova, I. E. Karmadonova, V. S. Derevshchikov, V. N. Rogozhnikov, P. V. Snytnikov, D. I. Potemkin
{"title":"催化剂Pt/Ce0.75Zr0.25O2和吸附剂NaNO3/MgO机械混合物上的吸附增强水煤气转移反应","authors":"A. M. Gorlova, I. E. Karmadonova, V. S. Derevshchikov, V. N. Rogozhnikov, P. V. Snytnikov, D. I. Potemkin","doi":"10.1134/S2070050422040031","DOIUrl":null,"url":null,"abstract":"<p>Results of studying the sorption-enhanced water gas shift reaction over a mechanical mixture of grains of 5 wt % Pt/Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> catalyst and 10 wt % NaNO<sub>3</sub>/MgO sorbent are presented. It is shown that pure magnesium oxide sorbs virtually no СО<sub>2</sub> under model conditions, while its promotion with NaNO<sub>3</sub> substantially improves the dynamic sorption capacity in the 300–350°C range of temperatures with a maximum at 320°C. The catalyst shows high activity and selectivity in the water gas shift reaction for a model mixture (CO, 11.6; H<sub>2</sub>, 61; H<sub>2</sub>O, 27.4 vol %). The concentration of CO at the outlet from the reactor is less than 1 vol % in the 220–400°C range of temperatures (the minimum is 0.3 vol % at 240°C) with СН<sub>4</sub> at the temperatures below 320°C (0.61 vol % at this point). Using this sorbent in mixtures with a catalyst in the sorption-enhanced water gas shift reaction at 320°C substantially reduces its sorption capacity, due probably to the full conversion of NaNO<sub>3</sub> into Na<sub>2</sub>CO<sub>3</sub> that is not completely decomposed at the stage of regeneration. This nevertheless allows the outlet СО and СН<sub>4</sub> concentrations to be halved, relative to values observed at this temperature in experiments with no sorbent: 6.1 × 10<sup>−4</sup> and 8.2 × 10<sup>−2</sup> vol % per dry gas basis at the middle of the first adsorption cycle. Prospects for using this approach in the sorption-enhanced water gas shift reaction and the need for further studies on improving the capacity and stability of the presented sorbents are described.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 4","pages":"349 - 356"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sorption-Enhanced Water Gas Shift Reaction over a Mechanical Mixture of the Catalyst Pt/Ce0.75Zr0.25O2 and the Sorbent NaNO3/MgO\",\"authors\":\"A. M. Gorlova, I. E. Karmadonova, V. S. Derevshchikov, V. N. Rogozhnikov, P. V. Snytnikov, D. I. Potemkin\",\"doi\":\"10.1134/S2070050422040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Results of studying the sorption-enhanced water gas shift reaction over a mechanical mixture of grains of 5 wt % Pt/Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> catalyst and 10 wt % NaNO<sub>3</sub>/MgO sorbent are presented. It is shown that pure magnesium oxide sorbs virtually no СО<sub>2</sub> under model conditions, while its promotion with NaNO<sub>3</sub> substantially improves the dynamic sorption capacity in the 300–350°C range of temperatures with a maximum at 320°C. The catalyst shows high activity and selectivity in the water gas shift reaction for a model mixture (CO, 11.6; H<sub>2</sub>, 61; H<sub>2</sub>O, 27.4 vol %). The concentration of CO at the outlet from the reactor is less than 1 vol % in the 220–400°C range of temperatures (the minimum is 0.3 vol % at 240°C) with СН<sub>4</sub> at the temperatures below 320°C (0.61 vol % at this point). Using this sorbent in mixtures with a catalyst in the sorption-enhanced water gas shift reaction at 320°C substantially reduces its sorption capacity, due probably to the full conversion of NaNO<sub>3</sub> into Na<sub>2</sub>CO<sub>3</sub> that is not completely decomposed at the stage of regeneration. This nevertheless allows the outlet СО and СН<sub>4</sub> concentrations to be halved, relative to values observed at this temperature in experiments with no sorbent: 6.1 × 10<sup>−4</sup> and 8.2 × 10<sup>−2</sup> vol % per dry gas basis at the middle of the first adsorption cycle. Prospects for using this approach in the sorption-enhanced water gas shift reaction and the need for further studies on improving the capacity and stability of the presented sorbents are described.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"14 4\",\"pages\":\"349 - 356\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050422040031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Sorption-Enhanced Water Gas Shift Reaction over a Mechanical Mixture of the Catalyst Pt/Ce0.75Zr0.25O2 and the Sorbent NaNO3/MgO
Results of studying the sorption-enhanced water gas shift reaction over a mechanical mixture of grains of 5 wt % Pt/Ce0.75Zr0.25O2 catalyst and 10 wt % NaNO3/MgO sorbent are presented. It is shown that pure magnesium oxide sorbs virtually no СО2 under model conditions, while its promotion with NaNO3 substantially improves the dynamic sorption capacity in the 300–350°C range of temperatures with a maximum at 320°C. The catalyst shows high activity and selectivity in the water gas shift reaction for a model mixture (CO, 11.6; H2, 61; H2O, 27.4 vol %). The concentration of CO at the outlet from the reactor is less than 1 vol % in the 220–400°C range of temperatures (the minimum is 0.3 vol % at 240°C) with СН4 at the temperatures below 320°C (0.61 vol % at this point). Using this sorbent in mixtures with a catalyst in the sorption-enhanced water gas shift reaction at 320°C substantially reduces its sorption capacity, due probably to the full conversion of NaNO3 into Na2CO3 that is not completely decomposed at the stage of regeneration. This nevertheless allows the outlet СО and СН4 concentrations to be halved, relative to values observed at this temperature in experiments with no sorbent: 6.1 × 10−4 and 8.2 × 10−2 vol % per dry gas basis at the middle of the first adsorption cycle. Prospects for using this approach in the sorption-enhanced water gas shift reaction and the need for further studies on improving the capacity and stability of the presented sorbents are described.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.