创建第一个机密gpu

Q3 Computer Science
Queue Pub Date : 2023-08-31 DOI:10.1145/3623393.3623391
Gobikrishna Dhanuskodi, Sudeshna Guha, Vidhya Krishnan, Aruna Manjunatha, Michael O'Connor, Rob Nertney, Phil Rogers
{"title":"创建第一个机密gpu","authors":"Gobikrishna Dhanuskodi, Sudeshna Guha, Vidhya Krishnan, Aruna Manjunatha, Michael O'Connor, Rob Nertney, Phil Rogers","doi":"10.1145/3623393.3623391","DOIUrl":null,"url":null,"abstract":"Today's datacenter GPU has a long and storied 3D graphics heritage. In the 1990s, graphics chips for PCs and consoles had fixed pipelines for geometry, rasterization, and pixels using integer and fixed-point arithmetic. In 1999, NVIDIA invented the modern GPU, which put a set of programmable cores at the heart of the chip, enabling rich 3D scene generation with great efficiency. It did not take long for developers and researchers to realize 'I could run compute on those parallel cores, and it would be blazing fast.' In 2004, Ian Buck created Brook at Stanford, the first compute library for GPUs, and in 2006, NVIDIA created CUDA, which is the gold standard for accelerated computing on GPUs today.","PeriodicalId":39042,"journal":{"name":"Queue","volume":"21 1","pages":"68 - 93"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creating the First Confidential GPUs\",\"authors\":\"Gobikrishna Dhanuskodi, Sudeshna Guha, Vidhya Krishnan, Aruna Manjunatha, Michael O'Connor, Rob Nertney, Phil Rogers\",\"doi\":\"10.1145/3623393.3623391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's datacenter GPU has a long and storied 3D graphics heritage. In the 1990s, graphics chips for PCs and consoles had fixed pipelines for geometry, rasterization, and pixels using integer and fixed-point arithmetic. In 1999, NVIDIA invented the modern GPU, which put a set of programmable cores at the heart of the chip, enabling rich 3D scene generation with great efficiency. It did not take long for developers and researchers to realize 'I could run compute on those parallel cores, and it would be blazing fast.' In 2004, Ian Buck created Brook at Stanford, the first compute library for GPUs, and in 2006, NVIDIA created CUDA, which is the gold standard for accelerated computing on GPUs today.\",\"PeriodicalId\":39042,\"journal\":{\"name\":\"Queue\",\"volume\":\"21 1\",\"pages\":\"68 - 93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Queue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3623393.3623391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3623393.3623391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

今天的数据中心GPU有着悠久而传奇的3D图形传统。在20世纪90年代,用于pc和主机的图形芯片具有固定的几何、光栅化和使用整数和定点算法的像素管道。1999年,NVIDIA发明了现代GPU,它在芯片的核心放置了一组可编程的内核,能够以极高的效率生成丰富的3D场景。没过多久,开发人员和研究人员就意识到,“我可以在这些并行核上运行计算,而且速度会非常快。”2004年,伊恩·巴克在斯坦福大学创建了布鲁克,这是第一个gpu计算库。2006年,英伟达创建了CUDA,这是当今gpu加速计算的黄金标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creating the First Confidential GPUs
Today's datacenter GPU has a long and storied 3D graphics heritage. In the 1990s, graphics chips for PCs and consoles had fixed pipelines for geometry, rasterization, and pixels using integer and fixed-point arithmetic. In 1999, NVIDIA invented the modern GPU, which put a set of programmable cores at the heart of the chip, enabling rich 3D scene generation with great efficiency. It did not take long for developers and researchers to realize 'I could run compute on those parallel cores, and it would be blazing fast.' In 2004, Ian Buck created Brook at Stanford, the first compute library for GPUs, and in 2006, NVIDIA created CUDA, which is the gold standard for accelerated computing on GPUs today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Queue
Queue Computer Science-Computer Science (all)
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信