{"title":"量子黑洞是经典的空间工厂","authors":"A. Iorio, L. Smaldone","doi":"10.1142/S0218271823500633","DOIUrl":null,"url":null,"abstract":"Space and matter may both be manifestations of a single fundamental quantum dynamics, as it may become evident during black-hole evaporation. Inspired by the fact that quantum electrodynamics underlies the classical theory of elasticity, that in turn has a natural and well-known geometric description in terms of curvature and torsion, related to topological defects, here we move some necessary steps to find the map from such fundamental quantum level to the emergent level of classical space and quantum matter. We proceed by adapting the boson transformation method of standard quantum field theory to the quantum gravity fundamental scenario and successfully obtain the emergence of curvature and torsion, our main focus here. In doing so, we have been able to overcome difficult issues of interpretation, related to the Goldstone modes for rotational symmetry. In fact, we have been able to apply the boson transformation method to disclinations, to relate them to the spin structure and to give an heuristic derivation of the matter field equation on curved space. We also improve results of previous work on the emergence of geometric tensors from elasticity theory, as the non-Abelian contributions to the torsion and curvature tensors, postulated in those papers, here emerge naturally. More work is necessary to identify the type of gravity theories one can obtain in this way.","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantum black holes as classical space factories\",\"authors\":\"A. Iorio, L. Smaldone\",\"doi\":\"10.1142/S0218271823500633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space and matter may both be manifestations of a single fundamental quantum dynamics, as it may become evident during black-hole evaporation. Inspired by the fact that quantum electrodynamics underlies the classical theory of elasticity, that in turn has a natural and well-known geometric description in terms of curvature and torsion, related to topological defects, here we move some necessary steps to find the map from such fundamental quantum level to the emergent level of classical space and quantum matter. We proceed by adapting the boson transformation method of standard quantum field theory to the quantum gravity fundamental scenario and successfully obtain the emergence of curvature and torsion, our main focus here. In doing so, we have been able to overcome difficult issues of interpretation, related to the Goldstone modes for rotational symmetry. In fact, we have been able to apply the boson transformation method to disclinations, to relate them to the spin structure and to give an heuristic derivation of the matter field equation on curved space. We also improve results of previous work on the emergence of geometric tensors from elasticity theory, as the non-Abelian contributions to the torsion and curvature tensors, postulated in those papers, here emerge naturally. More work is necessary to identify the type of gravity theories one can obtain in this way.\",\"PeriodicalId\":50307,\"journal\":{\"name\":\"International Journal of Modern Physics D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218271823500633\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0218271823500633","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Space and matter may both be manifestations of a single fundamental quantum dynamics, as it may become evident during black-hole evaporation. Inspired by the fact that quantum electrodynamics underlies the classical theory of elasticity, that in turn has a natural and well-known geometric description in terms of curvature and torsion, related to topological defects, here we move some necessary steps to find the map from such fundamental quantum level to the emergent level of classical space and quantum matter. We proceed by adapting the boson transformation method of standard quantum field theory to the quantum gravity fundamental scenario and successfully obtain the emergence of curvature and torsion, our main focus here. In doing so, we have been able to overcome difficult issues of interpretation, related to the Goldstone modes for rotational symmetry. In fact, we have been able to apply the boson transformation method to disclinations, to relate them to the spin structure and to give an heuristic derivation of the matter field equation on curved space. We also improve results of previous work on the emergence of geometric tensors from elasticity theory, as the non-Abelian contributions to the torsion and curvature tensors, postulated in those papers, here emerge naturally. More work is necessary to identify the type of gravity theories one can obtain in this way.
期刊介绍:
Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.