约束b样条变系数法非交叉加性分位数回归联合建模

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
V. Muggeo, G. Sottile, G. Cilluffo
{"title":"约束b样条变系数法非交叉加性分位数回归联合建模","authors":"V. Muggeo, G. Sottile, G. Cilluffo","doi":"10.1177/1471082x231181734","DOIUrl":null,"url":null,"abstract":"We present a unified framework able to fit the entire quantile process, namely to estimate simultaneously multiple non-crossing quantile curves. The framework relies on assuming each regression parameter varies smoothly across the percentile direction according to B-splines whose coefficients obey proper restrictions. Multiple linear and penalized smooth terms are allowed and the corresponding tuning parameters are estimated efficiently as part of the model fitting. Monotonicity and concavity constraints on the smoothed relationships are also easily accounted for in the framework. Simulation results provide evidence our proposal exhibits good statistical performance with respect to competitors while guaranteeing the non-crossing property and modest computational load. Analyses on a real dataset related to vocabulary size growth are presented to illustrate the model capability in practice.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint modelling of non-crossing additive quantile regression via constrained B-spline varying coefficients\",\"authors\":\"V. Muggeo, G. Sottile, G. Cilluffo\",\"doi\":\"10.1177/1471082x231181734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a unified framework able to fit the entire quantile process, namely to estimate simultaneously multiple non-crossing quantile curves. The framework relies on assuming each regression parameter varies smoothly across the percentile direction according to B-splines whose coefficients obey proper restrictions. Multiple linear and penalized smooth terms are allowed and the corresponding tuning parameters are estimated efficiently as part of the model fitting. Monotonicity and concavity constraints on the smoothed relationships are also easily accounted for in the framework. Simulation results provide evidence our proposal exhibits good statistical performance with respect to competitors while guaranteeing the non-crossing property and modest computational load. Analyses on a real dataset related to vocabulary size growth are presented to illustrate the model capability in practice.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082x231181734\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x231181734","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个能够拟合整个分位数过程的统一框架,即同时估计多个不相交的分位数曲线。该框架依赖于假设每个回归参数根据系数服从适当限制的B样条在百分位方向上平滑变化。允许多个线性和惩罚平滑项,并且作为模型拟合的一部分有效地估计相应的调谐参数。平滑关系上的单调性和凹度约束也很容易在框架中得到解释。仿真结果证明,我们的方案相对于竞争对手表现出良好的统计性能,同时保证了非交叉性和适度的计算负载。对与词汇大小增长相关的真实数据集进行了分析,以说明模型在实践中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint modelling of non-crossing additive quantile regression via constrained B-spline varying coefficients
We present a unified framework able to fit the entire quantile process, namely to estimate simultaneously multiple non-crossing quantile curves. The framework relies on assuming each regression parameter varies smoothly across the percentile direction according to B-splines whose coefficients obey proper restrictions. Multiple linear and penalized smooth terms are allowed and the corresponding tuning parameters are estimated efficiently as part of the model fitting. Monotonicity and concavity constraints on the smoothed relationships are also easily accounted for in the framework. Simulation results provide evidence our proposal exhibits good statistical performance with respect to competitors while guaranteeing the non-crossing property and modest computational load. Analyses on a real dataset related to vocabulary size growth are presented to illustrate the model capability in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信