德尔塔气味分子病原体筛选方法的研究

Q3 Agricultural and Biological Sciences
D. Gille, Bryan T. Barney, A. Segarra, M. Baerwald, Andrea Schreier, R. Connon
{"title":"德尔塔气味分子病原体筛选方法的研究","authors":"D. Gille, Bryan T. Barney, A. Segarra, M. Baerwald, Andrea Schreier, R. Connon","doi":"10.15447/sfews.2022v20iss20art4","DOIUrl":null,"url":null,"abstract":"Pathogen surveillance must be part of any population supplementation or reintroduction program for the conservation of threatened and endangered species. The unintended transmission of pathogens can have devastating effects on these already at-risk populations or the natural ecosystem at large. In the San Francisco Estuary (estuary), abundance of the endemic Delta Smelt (Hypomesus transpacificus) has declined to the point where regulatory managers are preparing to augment the wild population using fish propagated in a hatchery to prevent species extinction. Although disease is not an overt cause of population decline, comprehensive pathogen presence and prevalence data are lacking. Here, we performed a pilot study that applied molecular assays originally developed in salmonids to assess the presence of a wide variety of pathogens in the gill tissue of cultured and wild Delta Smelt—as well as cultured fish—deployed in enclosures in the estuary. We found the assays to be highly sensitive, and observed positive detections of a single pathogen, Ichthyophthirius multifiliis, in 13% of cultured Delta Smelt. We also detected ten other pathogens at very low levels in cultured, enclosure-deployed, and wild Delta Smelt that likely represent the ambient pathogen composition in the estuary (as opposed to actual infection). Our results corroborate previous work that cultured Delta Smelt do not appear to present a high risk for pathogen transmission during population supplementation or reintroduction. However, the molecular pathogen screening assays tested here have great utility as an early warning system indicator of when further diagnostic testing might be necessary to limit the extent and frequency of disease outbreaks; their utility will be further increased once they are customized for Delta Smelt.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Molecular Pathogen Screening Assays for Use in Delta Smelt\",\"authors\":\"D. Gille, Bryan T. Barney, A. Segarra, M. Baerwald, Andrea Schreier, R. Connon\",\"doi\":\"10.15447/sfews.2022v20iss20art4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathogen surveillance must be part of any population supplementation or reintroduction program for the conservation of threatened and endangered species. The unintended transmission of pathogens can have devastating effects on these already at-risk populations or the natural ecosystem at large. In the San Francisco Estuary (estuary), abundance of the endemic Delta Smelt (Hypomesus transpacificus) has declined to the point where regulatory managers are preparing to augment the wild population using fish propagated in a hatchery to prevent species extinction. Although disease is not an overt cause of population decline, comprehensive pathogen presence and prevalence data are lacking. Here, we performed a pilot study that applied molecular assays originally developed in salmonids to assess the presence of a wide variety of pathogens in the gill tissue of cultured and wild Delta Smelt—as well as cultured fish—deployed in enclosures in the estuary. We found the assays to be highly sensitive, and observed positive detections of a single pathogen, Ichthyophthirius multifiliis, in 13% of cultured Delta Smelt. We also detected ten other pathogens at very low levels in cultured, enclosure-deployed, and wild Delta Smelt that likely represent the ambient pathogen composition in the estuary (as opposed to actual infection). Our results corroborate previous work that cultured Delta Smelt do not appear to present a high risk for pathogen transmission during population supplementation or reintroduction. However, the molecular pathogen screening assays tested here have great utility as an early warning system indicator of when further diagnostic testing might be necessary to limit the extent and frequency of disease outbreaks; their utility will be further increased once they are customized for Delta Smelt.\",\"PeriodicalId\":38364,\"journal\":{\"name\":\"San Francisco Estuary and Watershed Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"San Francisco Estuary and Watershed Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15447/sfews.2022v20iss20art4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"San Francisco Estuary and Watershed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15447/sfews.2022v20iss20art4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

病原体监测必须是保护受威胁和濒危物种的任何种群补充或重新引入计划的一部分。病原体的意外传播可能会对这些已经处于危险之中的人群或整个自然生态系统产生毁灭性影响。在旧金山河口(河口),地方性三角洲气味(Hypomesus transpacificus)的丰富程度已经下降到监管管理人员正准备利用孵化场繁殖的鱼类来增加野生种群,以防止物种灭绝。尽管疾病不是人口下降的明显原因,但缺乏全面的病原体存在和流行率数据。在这里,我们进行了一项试点研究,应用最初在鲑鱼中开发的分子分析法来评估部署在河口围栏中的养殖和野生三角洲气味鱼以及养殖鱼类的鳃组织中是否存在多种病原体。我们发现这些检测方法具有高度敏感性,并在13%的培养的德尔塔嗅觉中观察到单一病原体——多发性鱼鳞病的阳性检测。我们还在培养的、部署的围栏和野生三角洲气味中检测到了其他十种非常低水平的病原体,这些病原体可能代表了河口的环境病原体组成(而不是实际感染)。我们的研究结果证实了之前的研究,即在种群补充或重新引入期间,培养的德尔塔气味似乎不会带来高风险的病原体传播。然而,这里测试的分子病原体筛查试验作为早期预警系统指标具有很大的实用性,可以指示何时可能需要进一步的诊断测试来限制疾病爆发的程度和频率;一旦为德尔塔冶炼厂定制,其效用将进一步提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Molecular Pathogen Screening Assays for Use in Delta Smelt
Pathogen surveillance must be part of any population supplementation or reintroduction program for the conservation of threatened and endangered species. The unintended transmission of pathogens can have devastating effects on these already at-risk populations or the natural ecosystem at large. In the San Francisco Estuary (estuary), abundance of the endemic Delta Smelt (Hypomesus transpacificus) has declined to the point where regulatory managers are preparing to augment the wild population using fish propagated in a hatchery to prevent species extinction. Although disease is not an overt cause of population decline, comprehensive pathogen presence and prevalence data are lacking. Here, we performed a pilot study that applied molecular assays originally developed in salmonids to assess the presence of a wide variety of pathogens in the gill tissue of cultured and wild Delta Smelt—as well as cultured fish—deployed in enclosures in the estuary. We found the assays to be highly sensitive, and observed positive detections of a single pathogen, Ichthyophthirius multifiliis, in 13% of cultured Delta Smelt. We also detected ten other pathogens at very low levels in cultured, enclosure-deployed, and wild Delta Smelt that likely represent the ambient pathogen composition in the estuary (as opposed to actual infection). Our results corroborate previous work that cultured Delta Smelt do not appear to present a high risk for pathogen transmission during population supplementation or reintroduction. However, the molecular pathogen screening assays tested here have great utility as an early warning system indicator of when further diagnostic testing might be necessary to limit the extent and frequency of disease outbreaks; their utility will be further increased once they are customized for Delta Smelt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
San Francisco Estuary and Watershed Science
San Francisco Estuary and Watershed Science Environmental Science-Water Science and Technology
CiteScore
2.90
自引率
0.00%
发文量
24
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信