质点流中以旋转椭球面为界的固定点刚体运动问题中附加积分存在的必要条件

IF 0.3 Q4 MECHANICS
M. M. Gadzhiev, A. S. Kuleshov
{"title":"质点流中以旋转椭球面为界的固定点刚体运动问题中附加积分存在的必要条件","authors":"M. M. Gadzhiev,&nbsp;A. S. Kuleshov","doi":"10.3103/S0027133023020048","DOIUrl":null,"url":null,"abstract":"<p>The problem of motion in a free molecular flow of particles of a rigid body with a fixed point bounded by the surface of an ellipsoid of revolution is considered. Necessary existence conditions for an additional analytic first integral independent of the energy integral are obtained in this problem.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"78 2","pages":"36 - 41"},"PeriodicalIF":0.3000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Necessary Existence Conditions for an Additional Integral in the Problem of Motion of a Rigid Body with a Fixed Point Bounded by the Surface of an Ellipsoid of Revolution in a Particle Flow\",\"authors\":\"M. M. Gadzhiev,&nbsp;A. S. Kuleshov\",\"doi\":\"10.3103/S0027133023020048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of motion in a free molecular flow of particles of a rigid body with a fixed point bounded by the surface of an ellipsoid of revolution is considered. Necessary existence conditions for an additional analytic first integral independent of the energy integral are obtained in this problem.</p>\",\"PeriodicalId\":710,\"journal\":{\"name\":\"Moscow University Mechanics Bulletin\",\"volume\":\"78 2\",\"pages\":\"36 - 41\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027133023020048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133023020048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了以旋转椭球表面为界的固定点刚体的自由分子流中的运动问题。得到了与能量积分无关的附加解析第一积分存在的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Necessary Existence Conditions for an Additional Integral in the Problem of Motion of a Rigid Body with a Fixed Point Bounded by the Surface of an Ellipsoid of Revolution in a Particle Flow

The problem of motion in a free molecular flow of particles of a rigid body with a fixed point bounded by the surface of an ellipsoid of revolution is considered. Necessary existence conditions for an additional analytic first integral independent of the energy integral are obtained in this problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信