隔离和接触者追踪在遏制COVID-19流行中的有效性的数学评估

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Lambert
{"title":"隔离和接触者追踪在遏制COVID-19流行中的有效性的数学评估","authors":"A. Lambert","doi":"10.1051/mmnp/2021042","DOIUrl":null,"url":null,"abstract":"In our model of the COVID-19 epidemic, infected individuals can be of four types, according whether they are asymptomatic ($A$) or symptomatic ($I$), and use a contact tracing mobile phone app ($Y$) or not ($N$). We denote by $f$ the fraction of $A$'s, by $y$ the fraction of $Y$'s and by $R_0$ the average number of secondary infections from a random infected individual.\nWe investigate the effect of non-digital interventions and of digital interventions, depending on the willingness to quarantine, parameterized by four cooperating probabilities.\nFor a given `effective' $R_0$ obtained with non-digital interventions, we use non-negative matrix theory and stopping line techniques to characterize mathematically the minimal fraction $y_0$ of app users needed to curb the epidemic. We show that under a wide range of scenarios, the threshold $y_0$ as a function of $R_0$ rises steeply from 0 at $R_0=1$ to prohibitively large values (of the order of $60-70\\%$ up) whenever $R_0$ is above 1.3. Our results show that moderate rates of adoption of a contact tracing app can reduce $R_0$ but are by no means sufficient to reduce it below 1 unless it is already very close to 1 thanks to non-digital interventions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A mathematical assessment of the efficiency of quarantining and contact tracing in curbing the COVID-19 epidemic\",\"authors\":\"A. Lambert\",\"doi\":\"10.1051/mmnp/2021042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our model of the COVID-19 epidemic, infected individuals can be of four types, according whether they are asymptomatic ($A$) or symptomatic ($I$), and use a contact tracing mobile phone app ($Y$) or not ($N$). We denote by $f$ the fraction of $A$'s, by $y$ the fraction of $Y$'s and by $R_0$ the average number of secondary infections from a random infected individual.\\nWe investigate the effect of non-digital interventions and of digital interventions, depending on the willingness to quarantine, parameterized by four cooperating probabilities.\\nFor a given `effective' $R_0$ obtained with non-digital interventions, we use non-negative matrix theory and stopping line techniques to characterize mathematically the minimal fraction $y_0$ of app users needed to curb the epidemic. We show that under a wide range of scenarios, the threshold $y_0$ as a function of $R_0$ rises steeply from 0 at $R_0=1$ to prohibitively large values (of the order of $60-70\\\\%$ up) whenever $R_0$ is above 1.3. Our results show that moderate rates of adoption of a contact tracing app can reduce $R_0$ but are by no means sufficient to reduce it below 1 unless it is already very close to 1 thanks to non-digital interventions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2021042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2021042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9

摘要

在我们的COVID-19流行模型中,感染者可以分为四种类型,根据他们是无症状($A$)还是有症状($I$),并使用接触者追踪手机应用程序($Y$)或不使用($N$)。我们用f表示A的分数,用y表示y的分数,用R_0表示随机感染个体的二次感染的平均数量。我们研究了非数字干预和数字干预的影响,这取决于隔离的意愿,由四个合作概率参数化。对于通过非数字干预获得的给定“有效”R_0$,我们使用非负矩阵理论和停止线技术从数学上表征控制疫情所需的应用程序用户的最小分数y_0$。我们表明,在广泛的场景下,阈值$y_0$作为$R_0$的函数从$R_0=1$时的0急剧上升到$R_0$高于1.3时的令人望而却步的大值(约为$60- 70%)。我们的研究结果表明,适度采用接触追踪应用程序可以降低R_0,但绝不足以将其降低到1以下,除非由于非数字干预,R_0已经非常接近1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mathematical assessment of the efficiency of quarantining and contact tracing in curbing the COVID-19 epidemic
In our model of the COVID-19 epidemic, infected individuals can be of four types, according whether they are asymptomatic ($A$) or symptomatic ($I$), and use a contact tracing mobile phone app ($Y$) or not ($N$). We denote by $f$ the fraction of $A$'s, by $y$ the fraction of $Y$'s and by $R_0$ the average number of secondary infections from a random infected individual. We investigate the effect of non-digital interventions and of digital interventions, depending on the willingness to quarantine, parameterized by four cooperating probabilities. For a given `effective' $R_0$ obtained with non-digital interventions, we use non-negative matrix theory and stopping line techniques to characterize mathematically the minimal fraction $y_0$ of app users needed to curb the epidemic. We show that under a wide range of scenarios, the threshold $y_0$ as a function of $R_0$ rises steeply from 0 at $R_0=1$ to prohibitively large values (of the order of $60-70\%$ up) whenever $R_0$ is above 1.3. Our results show that moderate rates of adoption of a contact tracing app can reduce $R_0$ but are by no means sufficient to reduce it below 1 unless it is already very close to 1 thanks to non-digital interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信