{"title":"基于机器学习和图像处理的番茄植物健康状况快速准确分类方法","authors":"H. Ulutaş, V. Aslantaş","doi":"10.5755/j02.eie.33866","DOIUrl":null,"url":null,"abstract":"Agriculture is crucial to economic growth and development, and maintaining high-quality, disease-free plants is crucial to its success. Early detection of plant diseases, which can be caused by environmental factors, fungi, bacteria, and viruses, is essential to implement appropriate treatments. Tomatoes, which are one of the most vital food crops, are susceptible to diseases that can result in significant economic losses in agriculture.\nThis study introduces a method to evaluate the health of tomato leaf using image processing techniques and machine learning algorithms. A dataset of 1,778 images of healthy and infected tomato leaves was collected from tomato planting areas in the Turkish provinces of Samsun and Mersin. Sixteen advanced machine learning algorithms were used for classification, and the optimal hyperparameters for each algorithm were determined using a grid search approach. The classifiers were executed on Jetson Nano and TX2 embedded systems.\nThe experimental results indicate that the Random Forest classifier outperformed other algorithms, achieving approximately 99 % accuracy in detecting and classifying the health status of tomato leaves. The proposed system enables faster and more accurate detection, allowing farmers to classify plants as infected or healthy, ultimately improving decision-making on treatment and pest management strategies.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Fast and Accurate Method for Classifying Tomato Plant Health Status Using Machine Learning and Image Processing\",\"authors\":\"H. Ulutaş, V. Aslantaş\",\"doi\":\"10.5755/j02.eie.33866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agriculture is crucial to economic growth and development, and maintaining high-quality, disease-free plants is crucial to its success. Early detection of plant diseases, which can be caused by environmental factors, fungi, bacteria, and viruses, is essential to implement appropriate treatments. Tomatoes, which are one of the most vital food crops, are susceptible to diseases that can result in significant economic losses in agriculture.\\nThis study introduces a method to evaluate the health of tomato leaf using image processing techniques and machine learning algorithms. A dataset of 1,778 images of healthy and infected tomato leaves was collected from tomato planting areas in the Turkish provinces of Samsun and Mersin. Sixteen advanced machine learning algorithms were used for classification, and the optimal hyperparameters for each algorithm were determined using a grid search approach. The classifiers were executed on Jetson Nano and TX2 embedded systems.\\nThe experimental results indicate that the Random Forest classifier outperformed other algorithms, achieving approximately 99 % accuracy in detecting and classifying the health status of tomato leaves. The proposed system enables faster and more accurate detection, allowing farmers to classify plants as infected or healthy, ultimately improving decision-making on treatment and pest management strategies.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.33866\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.33866","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Fast and Accurate Method for Classifying Tomato Plant Health Status Using Machine Learning and Image Processing
Agriculture is crucial to economic growth and development, and maintaining high-quality, disease-free plants is crucial to its success. Early detection of plant diseases, which can be caused by environmental factors, fungi, bacteria, and viruses, is essential to implement appropriate treatments. Tomatoes, which are one of the most vital food crops, are susceptible to diseases that can result in significant economic losses in agriculture.
This study introduces a method to evaluate the health of tomato leaf using image processing techniques and machine learning algorithms. A dataset of 1,778 images of healthy and infected tomato leaves was collected from tomato planting areas in the Turkish provinces of Samsun and Mersin. Sixteen advanced machine learning algorithms were used for classification, and the optimal hyperparameters for each algorithm were determined using a grid search approach. The classifiers were executed on Jetson Nano and TX2 embedded systems.
The experimental results indicate that the Random Forest classifier outperformed other algorithms, achieving approximately 99 % accuracy in detecting and classifying the health status of tomato leaves. The proposed system enables faster and more accurate detection, allowing farmers to classify plants as infected or healthy, ultimately improving decision-making on treatment and pest management strategies.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.