{"title":"负电荷富勒烯电子结构的多组态研究","authors":"F. Naderi, V. Veryazov","doi":"10.17265/1934-7375/2017.01.005","DOIUrl":null,"url":null,"abstract":"Multiconfigurational second order perturbation theory was employed in order to describe the ground and excited states of C_60^(-n). Different choices of the active spaces are discussed and the possibility to apply multiconfigurational theory to study C_120 is investigated. The calculations were performed for all possible spin states (for selected charge) and show the preference of low spin state. The energy difference between two C_60^(-3) and pairs C_60^(-1)- C_60^(-5) and C_60^(-2)- C_60^(-4) shows that the probability to create a charge alternation in fullerides is small.","PeriodicalId":67212,"journal":{"name":"化学与化工:英文版","volume":"11 1","pages":"30-30"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiconfigurational Study of the Electronic Structure of Negatively Charged Fullerens\",\"authors\":\"F. Naderi, V. Veryazov\",\"doi\":\"10.17265/1934-7375/2017.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiconfigurational second order perturbation theory was employed in order to describe the ground and excited states of C_60^(-n). Different choices of the active spaces are discussed and the possibility to apply multiconfigurational theory to study C_120 is investigated. The calculations were performed for all possible spin states (for selected charge) and show the preference of low spin state. The energy difference between two C_60^(-3) and pairs C_60^(-1)- C_60^(-5) and C_60^(-2)- C_60^(-4) shows that the probability to create a charge alternation in fullerides is small.\",\"PeriodicalId\":67212,\"journal\":{\"name\":\"化学与化工:英文版\",\"volume\":\"11 1\",\"pages\":\"30-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"化学与化工:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/1934-7375/2017.01.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"化学与化工:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/1934-7375/2017.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiconfigurational Study of the Electronic Structure of Negatively Charged Fullerens
Multiconfigurational second order perturbation theory was employed in order to describe the ground and excited states of C_60^(-n). Different choices of the active spaces are discussed and the possibility to apply multiconfigurational theory to study C_120 is investigated. The calculations were performed for all possible spin states (for selected charge) and show the preference of low spin state. The energy difference between two C_60^(-3) and pairs C_60^(-1)- C_60^(-5) and C_60^(-2)- C_60^(-4) shows that the probability to create a charge alternation in fullerides is small.