水稻稻瘟病抗性基因的筛选

N. Vozhzhova, O. Zhogaleva, Natia T. Kupreyshvili, A. Dubina, P. Kostylev
{"title":"水稻稻瘟病抗性基因的筛选","authors":"N. Vozhzhova, O. Zhogaleva, Natia T. Kupreyshvili, A. Dubina, P. Kostylev","doi":"10.22363/2312-797x-2021-16-4-326-336","DOIUrl":null,"url":null,"abstract":"Rice is one of the most widespread and cultivated crops in the world. It is necessary to increase the yield of crops or expand their sown areas to resolve a food security problem in Russia. Current impossibility of expanding rice cultivated areas in the Rostov region and the need to maintain and increase its yield require developing new disease-resistant varieties. Rice genotypes with multiple blast resistance genes avoid significant yield losses. Since pyramiding and selection of resistance genes in the same genotype through traditional selection methods are complicated, it is urgent to search for homozygous samples using marker-assisted selection methods. This study was aimed to identify Pi-1, Pi-2, Pi-33 and Pi-ta blast resistance genes in breeding rice samples by MAS-methods. The study used CTAB-method for DNA-isolation, PCR, electrophoresis on agarose and polyacrylamide gels. The resulting gels were stained in a solution of ethidium bromide and photographed in ultraviolet light. To control the presence of blast resistance genes the following parental cultivars were used: C104LAC for the Pi-1 and Pi-33 genes, C101-A-51 for the Pi-2 gene, IR36 for the Pi-ta gene; Novator and Boyarin as controls of non-functional alleles of all studied genes. The 446 selection samples of the seventh generation were analyzed. As a result of the research, 127 rice samples that combine 2 or 3 different blast resistance genes were identified. The Pi-2 and Pi-33 genes combination was identified in 43 samples (1128/1, 1149/3, 1171/2, 1177/3, 1177/4, 1186/4, et al.). Samples with three resistance genes are the most interesting for selection and further breeding. For developing new blast-resistant varieties, we recommend using rice samples with the following combinations of resistance genes Pi-1+Pi-2+Pi-33 (1197/1, 1226/2, 1271/1, 1272/2), Pi-1+Pi-2+Pi-ta (1197/4, 1304/2, 1304/3, 1482/3, 1482/4, 1486/1) and Pi-2+Pi-33+Pi-ta (1064/1, 1064/3, 1281/2, 1281/3, 1281/4, 1282/2, 1283/1, 1283/2, 1284/3).","PeriodicalId":53086,"journal":{"name":"RUDN Journal of Agronomy and Animal Industries","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of blast resistance genes in rice breeding samples\",\"authors\":\"N. Vozhzhova, O. Zhogaleva, Natia T. Kupreyshvili, A. Dubina, P. Kostylev\",\"doi\":\"10.22363/2312-797x-2021-16-4-326-336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rice is one of the most widespread and cultivated crops in the world. It is necessary to increase the yield of crops or expand their sown areas to resolve a food security problem in Russia. Current impossibility of expanding rice cultivated areas in the Rostov region and the need to maintain and increase its yield require developing new disease-resistant varieties. Rice genotypes with multiple blast resistance genes avoid significant yield losses. Since pyramiding and selection of resistance genes in the same genotype through traditional selection methods are complicated, it is urgent to search for homozygous samples using marker-assisted selection methods. This study was aimed to identify Pi-1, Pi-2, Pi-33 and Pi-ta blast resistance genes in breeding rice samples by MAS-methods. The study used CTAB-method for DNA-isolation, PCR, electrophoresis on agarose and polyacrylamide gels. The resulting gels were stained in a solution of ethidium bromide and photographed in ultraviolet light. To control the presence of blast resistance genes the following parental cultivars were used: C104LAC for the Pi-1 and Pi-33 genes, C101-A-51 for the Pi-2 gene, IR36 for the Pi-ta gene; Novator and Boyarin as controls of non-functional alleles of all studied genes. The 446 selection samples of the seventh generation were analyzed. As a result of the research, 127 rice samples that combine 2 or 3 different blast resistance genes were identified. The Pi-2 and Pi-33 genes combination was identified in 43 samples (1128/1, 1149/3, 1171/2, 1177/3, 1177/4, 1186/4, et al.). Samples with three resistance genes are the most interesting for selection and further breeding. For developing new blast-resistant varieties, we recommend using rice samples with the following combinations of resistance genes Pi-1+Pi-2+Pi-33 (1197/1, 1226/2, 1271/1, 1272/2), Pi-1+Pi-2+Pi-ta (1197/4, 1304/2, 1304/3, 1482/3, 1482/4, 1486/1) and Pi-2+Pi-33+Pi-ta (1064/1, 1064/3, 1281/2, 1281/3, 1281/4, 1282/2, 1283/1, 1283/2, 1284/3).\",\"PeriodicalId\":53086,\"journal\":{\"name\":\"RUDN Journal of Agronomy and Animal Industries\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RUDN Journal of Agronomy and Animal Industries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/2312-797x-2021-16-4-326-336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RUDN Journal of Agronomy and Animal Industries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2312-797x-2021-16-4-326-336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水稻是世界上种植最广泛的作物之一。要解决俄罗斯的粮食安全问题,必须提高作物产量或扩大播种面积。罗斯托夫地区目前不可能扩大水稻种植面积,而且需要保持和提高其产量,因此需要开发新的抗病品种。具有多个抗稻瘟病基因的水稻基因型避免了显著的产量损失。由于传统选择方法在同一基因型中对抗性基因进行金字塔化和选择较为复杂,因此迫切需要利用标记辅助选择方法寻找纯合子样本。本研究旨在利用mas方法鉴定水稻稻瘟病抗性基因Pi-1、Pi-2、Pi-33和Pi-ta。采用ctab法对琼脂糖和聚丙烯酰胺凝胶进行dna分离、PCR和电泳。所得凝胶在溴化乙锭溶液中染色,并在紫外光下照相。为控制稻瘟病抗性基因的存在,选用了以下亲本品种:Pi-1和Pi-33基因为C104LAC, Pi-2基因为C101-A-51, Pi-ta基因为IR36;Novator和Boyarin作为所有研究基因的非功能等位基因的对照。对第7代446个选择样本进行了分析。通过此次研究,鉴定出了127个含有2、3种不同稻瘟病抗性基因的水稻样本。在43份样本(1128/1、1149/3、1171/2、1177/3、1177/4、1186/4等)中鉴定出Pi-2和Pi-33基因组合。具有三种抗性基因的样品是最有价值的选择和进一步育种。为了培育新的抗稻瘟病品种,我们推荐使用以下抗稻瘟病基因组合Pi-1+Pi-2+Pi-33(1197/1、1226/2、1271/1、1272/2)、Pi-1+Pi-2+Pi-ta(1197/4、1304/2、1304/3、1482/3、1482/4、1482/4、1486/1)和Pi-2+Pi-33+Pi-ta(1064/1、1064/3、1282/2、1284/ 2、1283/1、1283/2、1284/3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening of blast resistance genes in rice breeding samples
Rice is one of the most widespread and cultivated crops in the world. It is necessary to increase the yield of crops or expand their sown areas to resolve a food security problem in Russia. Current impossibility of expanding rice cultivated areas in the Rostov region and the need to maintain and increase its yield require developing new disease-resistant varieties. Rice genotypes with multiple blast resistance genes avoid significant yield losses. Since pyramiding and selection of resistance genes in the same genotype through traditional selection methods are complicated, it is urgent to search for homozygous samples using marker-assisted selection methods. This study was aimed to identify Pi-1, Pi-2, Pi-33 and Pi-ta blast resistance genes in breeding rice samples by MAS-methods. The study used CTAB-method for DNA-isolation, PCR, electrophoresis on agarose and polyacrylamide gels. The resulting gels were stained in a solution of ethidium bromide and photographed in ultraviolet light. To control the presence of blast resistance genes the following parental cultivars were used: C104LAC for the Pi-1 and Pi-33 genes, C101-A-51 for the Pi-2 gene, IR36 for the Pi-ta gene; Novator and Boyarin as controls of non-functional alleles of all studied genes. The 446 selection samples of the seventh generation were analyzed. As a result of the research, 127 rice samples that combine 2 or 3 different blast resistance genes were identified. The Pi-2 and Pi-33 genes combination was identified in 43 samples (1128/1, 1149/3, 1171/2, 1177/3, 1177/4, 1186/4, et al.). Samples with three resistance genes are the most interesting for selection and further breeding. For developing new blast-resistant varieties, we recommend using rice samples with the following combinations of resistance genes Pi-1+Pi-2+Pi-33 (1197/1, 1226/2, 1271/1, 1272/2), Pi-1+Pi-2+Pi-ta (1197/4, 1304/2, 1304/3, 1482/3, 1482/4, 1486/1) and Pi-2+Pi-33+Pi-ta (1064/1, 1064/3, 1281/2, 1281/3, 1281/4, 1282/2, 1283/1, 1283/2, 1284/3).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信