在校准测角仪时,考虑测量不确定度评定过程中输入量的分布

IF 0.1 Q4 INSTRUMENTS & INSTRUMENTATION
I. Zakharov, I. Zadorozhna, D. Świsulski, D. Diakov
{"title":"在校准测角仪时,考虑测量不确定度评定过程中输入量的分布","authors":"I. Zakharov, I. Zadorozhna, D. Świsulski, D. Diakov","doi":"10.24027/2306-7039.1.2023.282586","DOIUrl":null,"url":null,"abstract":"The discords concerning the measurement uncertainty evaluation in the Guide to the Expressing of Uncertainty in Measurement (GUM) and its Supplement 1 are considered. To overcome these discords, the authors of the paper propose to use the kurtosis method and the law of the propagation of the expanded uncertainty. Using the example of the goniometer calibration, the features of accounting for the distribution laws of input quantities in the procedure for the measurement uncertainty evaluation are shown. A model for direct measurements of the value of a reference measure of the angle using a goniometer is written, the procedures for the measurement uncertainty evaluation are described, and uncertainty budgets for each of the methods are given. An example of the measurement uncertainty evaluation when calibrating a digital goniometer using a 24-sided reference prism is described. An estimate of the expanded measurement uncertainty for this example was made based on the web-based software application NIST Uncertainty Machine, which showed a good agreement with the estimates obtained by the considered methods. The technology of applying this software application for the confidence level of 0,9545, which the software lacks, is shown. The estimates of the measurement uncertainty obtained by the proposed methods, Monte Carlo method and methodology of the Guide to the Expressing of Uncertainty in Measurement are compared.","PeriodicalId":40775,"journal":{"name":"Ukrainian Metrological Journal","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accounting for the distributions of input quantities in the procedure for the measurement uncertainty evaluation when calibrating the goniometer\",\"authors\":\"I. Zakharov, I. Zadorozhna, D. Świsulski, D. Diakov\",\"doi\":\"10.24027/2306-7039.1.2023.282586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discords concerning the measurement uncertainty evaluation in the Guide to the Expressing of Uncertainty in Measurement (GUM) and its Supplement 1 are considered. To overcome these discords, the authors of the paper propose to use the kurtosis method and the law of the propagation of the expanded uncertainty. Using the example of the goniometer calibration, the features of accounting for the distribution laws of input quantities in the procedure for the measurement uncertainty evaluation are shown. A model for direct measurements of the value of a reference measure of the angle using a goniometer is written, the procedures for the measurement uncertainty evaluation are described, and uncertainty budgets for each of the methods are given. An example of the measurement uncertainty evaluation when calibrating a digital goniometer using a 24-sided reference prism is described. An estimate of the expanded measurement uncertainty for this example was made based on the web-based software application NIST Uncertainty Machine, which showed a good agreement with the estimates obtained by the considered methods. The technology of applying this software application for the confidence level of 0,9545, which the software lacks, is shown. The estimates of the measurement uncertainty obtained by the proposed methods, Monte Carlo method and methodology of the Guide to the Expressing of Uncertainty in Measurement are compared.\",\"PeriodicalId\":40775,\"journal\":{\"name\":\"Ukrainian Metrological Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Metrological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24027/2306-7039.1.2023.282586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Metrological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24027/2306-7039.1.2023.282586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

考虑了《测量不确定度表示指南》(GUM)及其补充文件1中有关测量不确定性评估的不一致之处。为了克服这些不一致,本文作者建议使用峰度方法和扩展不确定性的传播规律。以测角仪校准为例,说明了在测量不确定度评定过程中考虑输入量分布规律的特点。编写了一个使用角度计直接测量角度参考测量值的模型,描述了测量不确定度评估程序,并给出了每种方法的不确定度预算。介绍了使用24面参考棱镜校准数字测角仪时测量不确定度评估的一个例子。基于基于网络的软件应用程序NIST不确定度机,对本例的扩展测量不确定度进行了估计,该软件与所考虑的方法获得的估计值非常一致。显示了将该软件应用程序应用于软件所缺乏的09545置信水平的技术。比较了所提出的方法、蒙特卡罗方法和《测量不确定度表示指南》中的方法获得的测量不确定性的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accounting for the distributions of input quantities in the procedure for the measurement uncertainty evaluation when calibrating the goniometer
The discords concerning the measurement uncertainty evaluation in the Guide to the Expressing of Uncertainty in Measurement (GUM) and its Supplement 1 are considered. To overcome these discords, the authors of the paper propose to use the kurtosis method and the law of the propagation of the expanded uncertainty. Using the example of the goniometer calibration, the features of accounting for the distribution laws of input quantities in the procedure for the measurement uncertainty evaluation are shown. A model for direct measurements of the value of a reference measure of the angle using a goniometer is written, the procedures for the measurement uncertainty evaluation are described, and uncertainty budgets for each of the methods are given. An example of the measurement uncertainty evaluation when calibrating a digital goniometer using a 24-sided reference prism is described. An estimate of the expanded measurement uncertainty for this example was made based on the web-based software application NIST Uncertainty Machine, which showed a good agreement with the estimates obtained by the considered methods. The technology of applying this software application for the confidence level of 0,9545, which the software lacks, is shown. The estimates of the measurement uncertainty obtained by the proposed methods, Monte Carlo method and methodology of the Guide to the Expressing of Uncertainty in Measurement are compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Metrological Journal
Ukrainian Metrological Journal INSTRUMENTS & INSTRUMENTATION-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信