{"title":"几何特征对对转螺旋桨水动力性能的影响","authors":"F. Bouregba, M. Belkadi, M. Aounallah, L. Adjlout","doi":"10.3329/JNAME.V17I2.44950","DOIUrl":null,"url":null,"abstract":"New contra-rotating four-bladed DTMB propeller configurations operating in open water are numerically studied to determine their hydrodynamic performances. The unsteady turbulent flow around propellers is modelled by RANS equations with Kω SST model then solved by a CFD code. The computational domain is divided in two blocks linked with a rotating interface. The obtained results show that thrust and efficiency of the contra-rotating (CRP) increase compared to the single propeller, leading to a significant reduction of the propeller diameter. The variation in axial spacing and angular displacement seems to have little effect on the CRP efficiency. The results also show that the thrust can be further improved by adopting a moderate negative twist angle of the rear propeller. \nKeywords: CRP contra-rotating propeller, axial spacing, angular spacing, twist angle, CFD.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of geometrical features on the contra-rotating propeller hydrodynamic performances\",\"authors\":\"F. Bouregba, M. Belkadi, M. Aounallah, L. Adjlout\",\"doi\":\"10.3329/JNAME.V17I2.44950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New contra-rotating four-bladed DTMB propeller configurations operating in open water are numerically studied to determine their hydrodynamic performances. The unsteady turbulent flow around propellers is modelled by RANS equations with Kω SST model then solved by a CFD code. The computational domain is divided in two blocks linked with a rotating interface. The obtained results show that thrust and efficiency of the contra-rotating (CRP) increase compared to the single propeller, leading to a significant reduction of the propeller diameter. The variation in axial spacing and angular displacement seems to have little effect on the CRP efficiency. The results also show that the thrust can be further improved by adopting a moderate negative twist angle of the rear propeller. \\nKeywords: CRP contra-rotating propeller, axial spacing, angular spacing, twist angle, CFD.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V17I2.44950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V17I2.44950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Effect of geometrical features on the contra-rotating propeller hydrodynamic performances
New contra-rotating four-bladed DTMB propeller configurations operating in open water are numerically studied to determine their hydrodynamic performances. The unsteady turbulent flow around propellers is modelled by RANS equations with Kω SST model then solved by a CFD code. The computational domain is divided in two blocks linked with a rotating interface. The obtained results show that thrust and efficiency of the contra-rotating (CRP) increase compared to the single propeller, leading to a significant reduction of the propeller diameter. The variation in axial spacing and angular displacement seems to have little effect on the CRP efficiency. The results also show that the thrust can be further improved by adopting a moderate negative twist angle of the rear propeller.
Keywords: CRP contra-rotating propeller, axial spacing, angular spacing, twist angle, CFD.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.