{"title":"森肠杆菌AYS9的基因组评估:一种潜在的促进植物生长的抗旱根瘤菌","authors":"A. Fadiji, A. Ayangbenro, O. Babalola","doi":"10.3389/sjss.2023.11302","DOIUrl":null,"url":null,"abstract":"Drought stress poses a serious danger to agricultural production. Recent studies have revealed that most of the chemical methods used in the mitigation of its effects on plant production pose a serious threat to humans and the environment. Therefore, the demand for ecologically friendly solutions to ensure the security of the world’s food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. Enterobacter mori is a promising rhizobacteria in this regard. However, information on the genome analysis of E. mori linked to the rhizosphere soil of the sorghum plant has not been extensively studied. In this study, we present a genomic lens into functional attributes of E. mori AYS9 isolated from sorghum plants, as well as assess its drought tolerance and plant growth-promoting potentials. Our results showed the drought tolerance and plant growth-promoting potentials of the AYS9. Whole genome sequencing (WGS) results revealed that the genome yielded 4,852,175 bp sequence reads, an average read length of 151 bp, 1,845,357 bp genome size, 67 tRNAs, 3 rRNAs, and a G + C content of 55.5%. The functional genes identified in the genome were linked to processes including phosphate solubilization, iron transport, hormone regulation, nitrogen fixation, and resistance to oxidative and osmotic stress. Also, secondary metabolites supporting bacterial biocontrol properties against phytopathogens, and abiotic stress such as aerobactin-type non-ribosomal peptide siderophore, Stewartan-type ladderane, and Colicin type NRPS were discovered in the AYS9 genome. Our findings however establish that the intricate metabolic pathways mediated by the projected new genes in the bacterial genome may offer a genetic foundation for future understanding of rhizosphere biology and the diverse roles that these genes play in plant development and health.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic Assessment of Enterobacter mori AYS9: A Potential Plant Growth-Promoting Drought-Resistant Rhizobacteria\",\"authors\":\"A. Fadiji, A. Ayangbenro, O. Babalola\",\"doi\":\"10.3389/sjss.2023.11302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought stress poses a serious danger to agricultural production. Recent studies have revealed that most of the chemical methods used in the mitigation of its effects on plant production pose a serious threat to humans and the environment. Therefore, the demand for ecologically friendly solutions to ensure the security of the world’s food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. Enterobacter mori is a promising rhizobacteria in this regard. However, information on the genome analysis of E. mori linked to the rhizosphere soil of the sorghum plant has not been extensively studied. In this study, we present a genomic lens into functional attributes of E. mori AYS9 isolated from sorghum plants, as well as assess its drought tolerance and plant growth-promoting potentials. Our results showed the drought tolerance and plant growth-promoting potentials of the AYS9. Whole genome sequencing (WGS) results revealed that the genome yielded 4,852,175 bp sequence reads, an average read length of 151 bp, 1,845,357 bp genome size, 67 tRNAs, 3 rRNAs, and a G + C content of 55.5%. The functional genes identified in the genome were linked to processes including phosphate solubilization, iron transport, hormone regulation, nitrogen fixation, and resistance to oxidative and osmotic stress. Also, secondary metabolites supporting bacterial biocontrol properties against phytopathogens, and abiotic stress such as aerobactin-type non-ribosomal peptide siderophore, Stewartan-type ladderane, and Colicin type NRPS were discovered in the AYS9 genome. Our findings however establish that the intricate metabolic pathways mediated by the projected new genes in the bacterial genome may offer a genetic foundation for future understanding of rhizosphere biology and the diverse roles that these genes play in plant development and health.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/sjss.2023.11302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2023.11302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Genomic Assessment of Enterobacter mori AYS9: A Potential Plant Growth-Promoting Drought-Resistant Rhizobacteria
Drought stress poses a serious danger to agricultural production. Recent studies have revealed that most of the chemical methods used in the mitigation of its effects on plant production pose a serious threat to humans and the environment. Therefore, the demand for ecologically friendly solutions to ensure the security of the world’s food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. Enterobacter mori is a promising rhizobacteria in this regard. However, information on the genome analysis of E. mori linked to the rhizosphere soil of the sorghum plant has not been extensively studied. In this study, we present a genomic lens into functional attributes of E. mori AYS9 isolated from sorghum plants, as well as assess its drought tolerance and plant growth-promoting potentials. Our results showed the drought tolerance and plant growth-promoting potentials of the AYS9. Whole genome sequencing (WGS) results revealed that the genome yielded 4,852,175 bp sequence reads, an average read length of 151 bp, 1,845,357 bp genome size, 67 tRNAs, 3 rRNAs, and a G + C content of 55.5%. The functional genes identified in the genome were linked to processes including phosphate solubilization, iron transport, hormone regulation, nitrogen fixation, and resistance to oxidative and osmotic stress. Also, secondary metabolites supporting bacterial biocontrol properties against phytopathogens, and abiotic stress such as aerobactin-type non-ribosomal peptide siderophore, Stewartan-type ladderane, and Colicin type NRPS were discovered in the AYS9 genome. Our findings however establish that the intricate metabolic pathways mediated by the projected new genes in the bacterial genome may offer a genetic foundation for future understanding of rhizosphere biology and the diverse roles that these genes play in plant development and health.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.