J. Gu, W. Shao, Di Liu, Jiajun Feng, Juan Pang, T. Jin
{"title":"利拉鲁肽刺激小鼠附睾脂肪组织中的β-连环蛋白信号级联反应。","authors":"J. Gu, W. Shao, Di Liu, Jiajun Feng, Juan Pang, T. Jin","doi":"10.1530/JME-22-0026","DOIUrl":null,"url":null,"abstract":"Although canonical Wnt signaling pathway activation was shown to negatively regulate adipogenesis, recent investigations suggest that Wnt pathway effectors TCF7L2 and β-catenin (β-cat) in adipose tissues are also involved in energy homeostasis during adulthood. In assessing metabolic beneficial effect of GLP-1-based diabetes-drugs in high fat diet (HFD) challenged mice, we observed that liraglutide treatment affected expression of a battery of adipose tissue-specific genes, including that encode adiponectin and leptin, mainly in epididymal white adipose tissue (eWAT). Fourteen-week HFD challenge repressed TCF7L2 and β-cat S675 phosphorylation in eWAT while such repression was reversed by liraglutide treatment (150 µg/kg body weight daily) during week 10 to week 14. In Glp1r-/- mice, liraglutide failed in stimulating TCF7L2 or β-cat in eWAT. We detected Glp1r expression in mouse eWAT and its level is enriched in its \"stromal vascular fraction\" (SVF). Mouse eWAT-SVF showed reduced expression of Tcf7l2 and its Tcf7l2 level could not be stimulated by liraglutide treatment; while following adipogenic differentiation, rat eWAT-SVF showed elevated Tcf7l2 expression. Direct in vitro liraglutide treatment in eWAT-SVF stimulated CREB S133, β-cat S675 phosphorylation, and cellular cAMP level. Thus, cAMP/β-cat signaling cascade can be stimulated by liraglutide in eWAT via GLP-1R expressed in eWAT-SVF.","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Liraglutide stimulates the β-catenin signaling cascade in mouse epididymal fat tissue.\",\"authors\":\"J. Gu, W. Shao, Di Liu, Jiajun Feng, Juan Pang, T. Jin\",\"doi\":\"10.1530/JME-22-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although canonical Wnt signaling pathway activation was shown to negatively regulate adipogenesis, recent investigations suggest that Wnt pathway effectors TCF7L2 and β-catenin (β-cat) in adipose tissues are also involved in energy homeostasis during adulthood. In assessing metabolic beneficial effect of GLP-1-based diabetes-drugs in high fat diet (HFD) challenged mice, we observed that liraglutide treatment affected expression of a battery of adipose tissue-specific genes, including that encode adiponectin and leptin, mainly in epididymal white adipose tissue (eWAT). Fourteen-week HFD challenge repressed TCF7L2 and β-cat S675 phosphorylation in eWAT while such repression was reversed by liraglutide treatment (150 µg/kg body weight daily) during week 10 to week 14. In Glp1r-/- mice, liraglutide failed in stimulating TCF7L2 or β-cat in eWAT. We detected Glp1r expression in mouse eWAT and its level is enriched in its \\\"stromal vascular fraction\\\" (SVF). Mouse eWAT-SVF showed reduced expression of Tcf7l2 and its Tcf7l2 level could not be stimulated by liraglutide treatment; while following adipogenic differentiation, rat eWAT-SVF showed elevated Tcf7l2 expression. Direct in vitro liraglutide treatment in eWAT-SVF stimulated CREB S133, β-cat S675 phosphorylation, and cellular cAMP level. Thus, cAMP/β-cat signaling cascade can be stimulated by liraglutide in eWAT via GLP-1R expressed in eWAT-SVF.\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-22-0026\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-22-0026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Liraglutide stimulates the β-catenin signaling cascade in mouse epididymal fat tissue.
Although canonical Wnt signaling pathway activation was shown to negatively regulate adipogenesis, recent investigations suggest that Wnt pathway effectors TCF7L2 and β-catenin (β-cat) in adipose tissues are also involved in energy homeostasis during adulthood. In assessing metabolic beneficial effect of GLP-1-based diabetes-drugs in high fat diet (HFD) challenged mice, we observed that liraglutide treatment affected expression of a battery of adipose tissue-specific genes, including that encode adiponectin and leptin, mainly in epididymal white adipose tissue (eWAT). Fourteen-week HFD challenge repressed TCF7L2 and β-cat S675 phosphorylation in eWAT while such repression was reversed by liraglutide treatment (150 µg/kg body weight daily) during week 10 to week 14. In Glp1r-/- mice, liraglutide failed in stimulating TCF7L2 or β-cat in eWAT. We detected Glp1r expression in mouse eWAT and its level is enriched in its "stromal vascular fraction" (SVF). Mouse eWAT-SVF showed reduced expression of Tcf7l2 and its Tcf7l2 level could not be stimulated by liraglutide treatment; while following adipogenic differentiation, rat eWAT-SVF showed elevated Tcf7l2 expression. Direct in vitro liraglutide treatment in eWAT-SVF stimulated CREB S133, β-cat S675 phosphorylation, and cellular cAMP level. Thus, cAMP/β-cat signaling cascade can be stimulated by liraglutide in eWAT via GLP-1R expressed in eWAT-SVF.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.