切线射线叶理及其相关的外部台球

IF 1.3 2区 数学 Q1 MATHEMATICS
Yamile Godoy, Michael C. Harrison, M. Salvai
{"title":"切线射线叶理及其相关的外部台球","authors":"Yamile Godoy, Michael C. Harrison, M. Salvai","doi":"10.4171/rmi/1434","DOIUrl":null,"url":null,"abstract":"Let $v$ be a unit vector field on a complete, umbilic (but not totally geodesic) hypersurface $N$ in a space form; for example on the unit sphere $S^{2k-1} \\subset \\mathbb{R}^{2k}$, or on a horosphere in hyperbolic space. We give necessary and sufficient conditions on $v$ for the rays with initial velocities $v$ (and $-v$) to foliate the exterior $U$ of $N$. We find and explore relationships among these vector fields, geodesic vector fields, and contact structures on $N$. When the rays corresponding to each of $\\pm v$ foliate $U$, $v$ induces an outer billiard map whose billiard table is $U$. We describe the unit vector fields on $N$ whose associated outer billiard map is volume preserving. Also we study a particular example in detail, namely, when $N \\simeq \\mathbb{R}^3$ is a horosphere of the four-dimensional hyperbolic space and $v$ is the unit vector field on $N$ obtained by normalizing the stereographic projection of a Hopf vector field on $S^{3}$. In the corresponding outer billiard map we find explicit periodic orbits, unbounded orbits, and bounded nonperiodic orbits. We conclude with several questions regarding the topology and geometry of bifoliating vector fields and the dynamics of their associated outer billiards.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tangent ray foliations and their associated outer billiards\",\"authors\":\"Yamile Godoy, Michael C. Harrison, M. Salvai\",\"doi\":\"10.4171/rmi/1434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $v$ be a unit vector field on a complete, umbilic (but not totally geodesic) hypersurface $N$ in a space form; for example on the unit sphere $S^{2k-1} \\\\subset \\\\mathbb{R}^{2k}$, or on a horosphere in hyperbolic space. We give necessary and sufficient conditions on $v$ for the rays with initial velocities $v$ (and $-v$) to foliate the exterior $U$ of $N$. We find and explore relationships among these vector fields, geodesic vector fields, and contact structures on $N$. When the rays corresponding to each of $\\\\pm v$ foliate $U$, $v$ induces an outer billiard map whose billiard table is $U$. We describe the unit vector fields on $N$ whose associated outer billiard map is volume preserving. Also we study a particular example in detail, namely, when $N \\\\simeq \\\\mathbb{R}^3$ is a horosphere of the four-dimensional hyperbolic space and $v$ is the unit vector field on $N$ obtained by normalizing the stereographic projection of a Hopf vector field on $S^{3}$. In the corresponding outer billiard map we find explicit periodic orbits, unbounded orbits, and bounded nonperiodic orbits. We conclude with several questions regarding the topology and geometry of bifoliating vector fields and the dynamics of their associated outer billiards.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1434\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1434","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$v$是空间形式的完备脐(但不完全测地)超曲面$N$上的单位向量场;例如在单位球面$S^{2k-1}\subet \mathbb{R}^{2k}$上,或者在双曲空间中的星历上。对于初始速度为$v$(和$-v$)的射线,我们在$v$上给出了使$N$的外部$U$叶化的充要条件。我们发现并探索了这些向量场、测地向量场和$N$上的接触结构之间的关系。当与$\pm v$folie$U$、$v$中的每一个相对应的光线诱发台球桌为$U$的外部台球地图时。我们描述了$N$上的单位向量场,其关联的外台球映射是保体积的。此外,我们还详细研究了一个特定的例子,即当$N\simeq\mathbb{R}^3$是四维双曲空间的星历,$v$是通过归一化Hopf向量场在$S^{3}$上的立体投影而获得的$N$上的单位向量场时。在相应的外台球图中,我们发现了显式周期轨道、无界轨道和有界非周期轨道。最后,我们提出了几个关于双叶矢量场的拓扑结构和几何结构及其相关外台球动力学的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tangent ray foliations and their associated outer billiards
Let $v$ be a unit vector field on a complete, umbilic (but not totally geodesic) hypersurface $N$ in a space form; for example on the unit sphere $S^{2k-1} \subset \mathbb{R}^{2k}$, or on a horosphere in hyperbolic space. We give necessary and sufficient conditions on $v$ for the rays with initial velocities $v$ (and $-v$) to foliate the exterior $U$ of $N$. We find and explore relationships among these vector fields, geodesic vector fields, and contact structures on $N$. When the rays corresponding to each of $\pm v$ foliate $U$, $v$ induces an outer billiard map whose billiard table is $U$. We describe the unit vector fields on $N$ whose associated outer billiard map is volume preserving. Also we study a particular example in detail, namely, when $N \simeq \mathbb{R}^3$ is a horosphere of the four-dimensional hyperbolic space and $v$ is the unit vector field on $N$ obtained by normalizing the stereographic projection of a Hopf vector field on $S^{3}$. In the corresponding outer billiard map we find explicit periodic orbits, unbounded orbits, and bounded nonperiodic orbits. We conclude with several questions regarding the topology and geometry of bifoliating vector fields and the dynamics of their associated outer billiards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信