Dohyun Kim, Mangi Cho, Hocheol Shin, Jaehoon Kim, Juhwan Noh, Yongdae Kim
{"title":"Lightbox:基于光谱指纹的光电传感器攻击检测","authors":"Dohyun Kim, Mangi Cho, Hocheol Shin, Jaehoon Kim, Juhwan Noh, Yongdae Kim","doi":"10.1145/3615867","DOIUrl":null,"url":null,"abstract":"Photoelectric sensors are utilized in a range of safety-critical applications, such as medical devices and autonomous vehicles. However, the public exposure of the input channel of a photoelectric sensor makes it vulnerable to malicious inputs. Several studies have suggested possible attacks on photoelectric sensors by injecting malicious signals. While a few defense techniques have been proposed against such attacks, they could be either bypassed or used for limited purposes. In this study, we propose Lightbox, a novel defense system to detect sensor attacks on photoelectric sensors based on signal fingerprinting. Lightbox uses the spectrum of the received light as a feature to distinguish the attacker’s malicious signals from the authentic signal, which is a signal from the sensor’s light source. We evaluated Lightbox against 1) a saturation attacker, 2) a simple spoofing attacker, and 3) a sophisticated attacker who is aware of Lightbox and can combine multiple light sources to mimic the authentic light source. Lightbox achieved the overall accuracy over 99% for the saturation attacker and simple spoofing attacker, and robustness against a sophisticated attacker. We also evaluated Lightbox considering various environments such as transmission medium, background noise, and input waveform. Finally, we demonstrate the practicality of Lightbox with experiments using a single-board computer after further reducing the training time.","PeriodicalId":56050,"journal":{"name":"ACM Transactions on Privacy and Security","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightbox: Sensor Attack Detection for Photoelectric Sensors via Spectrum Fingerprinting\",\"authors\":\"Dohyun Kim, Mangi Cho, Hocheol Shin, Jaehoon Kim, Juhwan Noh, Yongdae Kim\",\"doi\":\"10.1145/3615867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoelectric sensors are utilized in a range of safety-critical applications, such as medical devices and autonomous vehicles. However, the public exposure of the input channel of a photoelectric sensor makes it vulnerable to malicious inputs. Several studies have suggested possible attacks on photoelectric sensors by injecting malicious signals. While a few defense techniques have been proposed against such attacks, they could be either bypassed or used for limited purposes. In this study, we propose Lightbox, a novel defense system to detect sensor attacks on photoelectric sensors based on signal fingerprinting. Lightbox uses the spectrum of the received light as a feature to distinguish the attacker’s malicious signals from the authentic signal, which is a signal from the sensor’s light source. We evaluated Lightbox against 1) a saturation attacker, 2) a simple spoofing attacker, and 3) a sophisticated attacker who is aware of Lightbox and can combine multiple light sources to mimic the authentic light source. Lightbox achieved the overall accuracy over 99% for the saturation attacker and simple spoofing attacker, and robustness against a sophisticated attacker. We also evaluated Lightbox considering various environments such as transmission medium, background noise, and input waveform. Finally, we demonstrate the practicality of Lightbox with experiments using a single-board computer after further reducing the training time.\",\"PeriodicalId\":56050,\"journal\":{\"name\":\"ACM Transactions on Privacy and Security\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Privacy and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3615867\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Privacy and Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3615867","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Lightbox: Sensor Attack Detection for Photoelectric Sensors via Spectrum Fingerprinting
Photoelectric sensors are utilized in a range of safety-critical applications, such as medical devices and autonomous vehicles. However, the public exposure of the input channel of a photoelectric sensor makes it vulnerable to malicious inputs. Several studies have suggested possible attacks on photoelectric sensors by injecting malicious signals. While a few defense techniques have been proposed against such attacks, they could be either bypassed or used for limited purposes. In this study, we propose Lightbox, a novel defense system to detect sensor attacks on photoelectric sensors based on signal fingerprinting. Lightbox uses the spectrum of the received light as a feature to distinguish the attacker’s malicious signals from the authentic signal, which is a signal from the sensor’s light source. We evaluated Lightbox against 1) a saturation attacker, 2) a simple spoofing attacker, and 3) a sophisticated attacker who is aware of Lightbox and can combine multiple light sources to mimic the authentic light source. Lightbox achieved the overall accuracy over 99% for the saturation attacker and simple spoofing attacker, and robustness against a sophisticated attacker. We also evaluated Lightbox considering various environments such as transmission medium, background noise, and input waveform. Finally, we demonstrate the practicality of Lightbox with experiments using a single-board computer after further reducing the training time.
期刊介绍:
ACM Transactions on Privacy and Security (TOPS) (formerly known as TISSEC) publishes high-quality research results in the fields of information and system security and privacy. Studies addressing all aspects of these fields are welcomed, ranging from technologies, to systems and applications, to the crafting of policies.