{"title":"brÜck猜想的复差分-差分模拟的一些结果","authors":"Min Chen, Zongsheng Gao","doi":"10.4134/CKMS.C160123","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of Brück conjecture. In other words, we consider ∆ηf(z) = f(z+η)−f(z) and f (z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where η ∈ C \\ {0} is a constant such that f(z + η) − f(z) 6≡ 0.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SOME RESULTS ON COMPLEX DIFFERENTIAL-DIFFERENCE ANALOGUE OF BRÜCK CONJECTURE\",\"authors\":\"Min Chen, Zongsheng Gao\",\"doi\":\"10.4134/CKMS.C160123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of Brück conjecture. In other words, we consider ∆ηf(z) = f(z+η)−f(z) and f (z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where η ∈ C \\\\ {0} is a constant such that f(z + η) − f(z) 6≡ 0.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C160123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C160123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SOME RESULTS ON COMPLEX DIFFERENTIAL-DIFFERENCE ANALOGUE OF BRÜCK CONJECTURE
Abstract. In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of Brück conjecture. In other words, we consider ∆ηf(z) = f(z+η)−f(z) and f (z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where η ∈ C \ {0} is a constant such that f(z + η) − f(z) 6≡ 0.