brÜck猜想的复差分-差分模拟的一些结果

Pub Date : 2017-04-30 DOI:10.4134/CKMS.C160123
Min Chen, Zongsheng Gao
{"title":"brÜck猜想的复差分-差分模拟的一些结果","authors":"Min Chen, Zongsheng Gao","doi":"10.4134/CKMS.C160123","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of Brück conjecture. In other words, we consider ∆ηf(z) = f(z+η)−f(z) and f (z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where η ∈ C \\ {0} is a constant such that f(z + η) − f(z) 6≡ 0.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SOME RESULTS ON COMPLEX DIFFERENTIAL-DIFFERENCE ANALOGUE OF BRÜCK CONJECTURE\",\"authors\":\"Min Chen, Zongsheng Gao\",\"doi\":\"10.4134/CKMS.C160123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of Brück conjecture. In other words, we consider ∆ηf(z) = f(z+η)−f(z) and f (z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where η ∈ C \\\\ {0} is a constant such that f(z + η) − f(z) 6≡ 0.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C160123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C160123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文利用Nevanlinna理论和亚纯函数的唯一性理论研究了br ck猜想的微分-差分类似。换句话说,我们考虑∆ηf(z) = f(z+η)−f(z)和f(z)共享一个值或一个小函数,然后在某些条件下得到超越整个函数f(z)的精确表达式,其中η∈C \{0}是一个常数,使得f(z+η)−f(z) 6≡0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
SOME RESULTS ON COMPLEX DIFFERENTIAL-DIFFERENCE ANALOGUE OF BRÜCK CONJECTURE
Abstract. In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of Brück conjecture. In other words, we consider ∆ηf(z) = f(z+η)−f(z) and f (z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where η ∈ C \ {0} is a constant such that f(z + η) − f(z) 6≡ 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信