伯努利一次渗流中时间常数的一阶行为

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Anne-Laure Basdevant, Jean-Baptiste Gou'er'e, Marie Th'eret
{"title":"伯努利一次渗流中时间常数的一阶行为","authors":"Anne-Laure Basdevant, Jean-Baptiste Gou'er'e, Marie Th'eret","doi":"10.1214/22-aap1795","DOIUrl":null,"url":null,"abstract":"We consider the standard model of first-passage percolation on Z (d ≥ 2), with i.i.d. passage times associated with either the edges or the vertices of the graph. We focus on the particular case where the distribution of the passage times is the Bernoulli distribution with parameter 1− ε. These passage times induce a random pseudo-metric Tε on R. By subadditive arguments, it is well known that for any z ∈ R \\ {0}, the sequence Tε(0, bnzc)/n converges a.s. towards a constant με(z) called the time constant. We investigate the behavior of ε 7→ με(z) near 0, and prove that με(z) = ‖z‖1 − C(z)ε1/d1(z) + o(ε1/d1(z)), where d1(z) is the number of non null coordinates of z, and C(z) is a constant whose dependence on z is partially explicit.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First-order behavior of the time constant in Bernoulli first-passage percolation\",\"authors\":\"Anne-Laure Basdevant, Jean-Baptiste Gou'er'e, Marie Th'eret\",\"doi\":\"10.1214/22-aap1795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the standard model of first-passage percolation on Z (d ≥ 2), with i.i.d. passage times associated with either the edges or the vertices of the graph. We focus on the particular case where the distribution of the passage times is the Bernoulli distribution with parameter 1− ε. These passage times induce a random pseudo-metric Tε on R. By subadditive arguments, it is well known that for any z ∈ R \\\\ {0}, the sequence Tε(0, bnzc)/n converges a.s. towards a constant με(z) called the time constant. We investigate the behavior of ε 7→ με(z) near 0, and prove that με(z) = ‖z‖1 − C(z)ε1/d1(z) + o(ε1/d1(z)), where d1(z) is the number of non null coordinates of z, and C(z) is a constant whose dependence on z is partially explicit.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1795\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1795","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑Z(d≥2)上第一次通过渗流的标准模型,其中i.i.d.通过时间与图的边或顶点相关联。我们重点讨论通过时间的分布是参数为1−ε的伯努利分布的特殊情况。这些通过时间在R上诱导了一个随机的伪度量Tε。通过次加性自变量,众所周知,对于任何z∈R\{0},序列Tε(0,bnzc)/n向一个称为时间常数的常数με(z)收敛。我们研究了ε7的行为→ με(z)在0附近,并证明了με(z)=‖z‖1−C(z)ε1/d1(z)+o(ε1/d1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-order behavior of the time constant in Bernoulli first-passage percolation
We consider the standard model of first-passage percolation on Z (d ≥ 2), with i.i.d. passage times associated with either the edges or the vertices of the graph. We focus on the particular case where the distribution of the passage times is the Bernoulli distribution with parameter 1− ε. These passage times induce a random pseudo-metric Tε on R. By subadditive arguments, it is well known that for any z ∈ R \ {0}, the sequence Tε(0, bnzc)/n converges a.s. towards a constant με(z) called the time constant. We investigate the behavior of ε 7→ με(z) near 0, and prove that με(z) = ‖z‖1 − C(z)ε1/d1(z) + o(ε1/d1(z)), where d1(z) is the number of non null coordinates of z, and C(z) is a constant whose dependence on z is partially explicit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信