图像去噪扩散模型的自动有限元解

Q4 Mathematics
Abderrazzak Boufala, E. Kalmoun
{"title":"图像去噪扩散模型的自动有限元解","authors":"Abderrazzak Boufala, E. Kalmoun","doi":"10.2478/tmmp-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract We present in this paper a numerical solution of a generalized diffusion-based image denoising model, using the finite element computing platform FEniCS. The generalized model contains as special cases three classical denoising techniques: linear isotropic diffusion, total variation, and Perona-Malik method. The numerical simulation using four classical grayscale images demonstrates the superior performance of the finite element method over the finite difference method in terms of both the denoising quality and the computational work.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"83 1","pages":"11 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Finite Element Solution of Diffusion Models for Image Denoising\",\"authors\":\"Abderrazzak Boufala, E. Kalmoun\",\"doi\":\"10.2478/tmmp-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present in this paper a numerical solution of a generalized diffusion-based image denoising model, using the finite element computing platform FEniCS. The generalized model contains as special cases three classical denoising techniques: linear isotropic diffusion, total variation, and Perona-Malik method. The numerical simulation using four classical grayscale images demonstrates the superior performance of the finite element method over the finite difference method in terms of both the denoising quality and the computational work.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"83 1\",\"pages\":\"11 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文使用有限元计算平台FEniCS,给出了一个基于广义扩散的图像去噪模型的数值解。作为特例,广义模型包含三种经典的去噪技术:线性各向同性扩散、全变分和Perona-Malik方法。使用四幅经典灰度图像进行的数值模拟表明,有限元方法在去噪质量和计算工作量方面都优于有限差分方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Finite Element Solution of Diffusion Models for Image Denoising
Abstract We present in this paper a numerical solution of a generalized diffusion-based image denoising model, using the finite element computing platform FEniCS. The generalized model contains as special cases three classical denoising techniques: linear isotropic diffusion, total variation, and Perona-Malik method. The numerical simulation using four classical grayscale images demonstrates the superior performance of the finite element method over the finite difference method in terms of both the denoising quality and the computational work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信