Meredith M. Doellman, G. Hood, Jacob Gersfeld, Amanda L. Driscoe, Charles C. Y. Xu, Ryan N. Sheehy, Noah Holmes, W. Yee, J. Feder
{"title":"一种隐性入侵农业害虫的诊断遗传标记鉴定——以苹果蛆蝇为例(双翅目:蝗科)","authors":"Meredith M. Doellman, G. Hood, Jacob Gersfeld, Amanda L. Driscoe, Charles C. Y. Xu, Ryan N. Sheehy, Noah Holmes, W. Yee, J. Feder","doi":"10.1093/aesa/saz069","DOIUrl":null,"url":null,"abstract":"Abstract Insect pests destroy ∼15% of all U.S. crops, resulting in losses of $15 billion annually. Thus, developing cheap, quick, and reliable methods for detecting harmful species is critical to curtail insect damage and lessen economic impact. The apple maggot fly, Rhagoletis pomonella, is a major invasive pest threatening the multibillion-dollar apple industry in the Pacific Northwest United States. The fly is also sympatric with a benign but morphologically similar and genetically closely related species, R. zephyria, which attacks noncommercial snowberry. Unambiguous species identification is essential due to a zero-infestation policy of apple maggot for fruit export. Mistaking R. zephyria for R. pomonella triggers unnecessary and costly quarantines, diverting valuable control resources. Here we develop and apply a relatively simple and cost-effective diagnostic approach using Illumina sequencing of double-digest restriction site-associated DNA markers. We identified five informative single-nucleotide polymorphisms (SNPs) and designed a diagnostic test based on agarose gel electrophoresis of restriction enzyme-digested polymerase chain reaction amplification products (RFLPs) to distinguish fly species. We demonstrated the utility of this approach for immediate, 1-d species identification by scoring apple- and snowberry-infesting flies from known hosts, reared from fruit collected at 11 sites throughout Washington. However, if immediate diagnosis is not required, or hundreds to thousands of specimens must be assessed, then a direct Illumina-based sequencing strategy, similar to that used here for diagnostic SNP identification, can be powerful and cost-effective. The genomic strategy we present is effective for R. pomonella and also transferable to many cryptic pests.","PeriodicalId":8076,"journal":{"name":"Annals of The Entomological Society of America","volume":"113 1","pages":"246 - 256"},"PeriodicalIF":3.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/aesa/saz069","citationCount":"6","resultStr":"{\"title\":\"Identifying Diagnostic Genetic Markers for a Cryptic Invasive Agricultural Pest: A Test Case Using the Apple Maggot Fly (Diptera: Tephritidae)\",\"authors\":\"Meredith M. Doellman, G. Hood, Jacob Gersfeld, Amanda L. Driscoe, Charles C. Y. Xu, Ryan N. Sheehy, Noah Holmes, W. Yee, J. Feder\",\"doi\":\"10.1093/aesa/saz069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Insect pests destroy ∼15% of all U.S. crops, resulting in losses of $15 billion annually. Thus, developing cheap, quick, and reliable methods for detecting harmful species is critical to curtail insect damage and lessen economic impact. The apple maggot fly, Rhagoletis pomonella, is a major invasive pest threatening the multibillion-dollar apple industry in the Pacific Northwest United States. The fly is also sympatric with a benign but morphologically similar and genetically closely related species, R. zephyria, which attacks noncommercial snowberry. Unambiguous species identification is essential due to a zero-infestation policy of apple maggot for fruit export. Mistaking R. zephyria for R. pomonella triggers unnecessary and costly quarantines, diverting valuable control resources. Here we develop and apply a relatively simple and cost-effective diagnostic approach using Illumina sequencing of double-digest restriction site-associated DNA markers. We identified five informative single-nucleotide polymorphisms (SNPs) and designed a diagnostic test based on agarose gel electrophoresis of restriction enzyme-digested polymerase chain reaction amplification products (RFLPs) to distinguish fly species. We demonstrated the utility of this approach for immediate, 1-d species identification by scoring apple- and snowberry-infesting flies from known hosts, reared from fruit collected at 11 sites throughout Washington. However, if immediate diagnosis is not required, or hundreds to thousands of specimens must be assessed, then a direct Illumina-based sequencing strategy, similar to that used here for diagnostic SNP identification, can be powerful and cost-effective. The genomic strategy we present is effective for R. pomonella and also transferable to many cryptic pests.\",\"PeriodicalId\":8076,\"journal\":{\"name\":\"Annals of The Entomological Society of America\",\"volume\":\"113 1\",\"pages\":\"246 - 256\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/aesa/saz069\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of The Entomological Society of America\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/aesa/saz069\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of The Entomological Society of America","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/aesa/saz069","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Identifying Diagnostic Genetic Markers for a Cryptic Invasive Agricultural Pest: A Test Case Using the Apple Maggot Fly (Diptera: Tephritidae)
Abstract Insect pests destroy ∼15% of all U.S. crops, resulting in losses of $15 billion annually. Thus, developing cheap, quick, and reliable methods for detecting harmful species is critical to curtail insect damage and lessen economic impact. The apple maggot fly, Rhagoletis pomonella, is a major invasive pest threatening the multibillion-dollar apple industry in the Pacific Northwest United States. The fly is also sympatric with a benign but morphologically similar and genetically closely related species, R. zephyria, which attacks noncommercial snowberry. Unambiguous species identification is essential due to a zero-infestation policy of apple maggot for fruit export. Mistaking R. zephyria for R. pomonella triggers unnecessary and costly quarantines, diverting valuable control resources. Here we develop and apply a relatively simple and cost-effective diagnostic approach using Illumina sequencing of double-digest restriction site-associated DNA markers. We identified five informative single-nucleotide polymorphisms (SNPs) and designed a diagnostic test based on agarose gel electrophoresis of restriction enzyme-digested polymerase chain reaction amplification products (RFLPs) to distinguish fly species. We demonstrated the utility of this approach for immediate, 1-d species identification by scoring apple- and snowberry-infesting flies from known hosts, reared from fruit collected at 11 sites throughout Washington. However, if immediate diagnosis is not required, or hundreds to thousands of specimens must be assessed, then a direct Illumina-based sequencing strategy, similar to that used here for diagnostic SNP identification, can be powerful and cost-effective. The genomic strategy we present is effective for R. pomonella and also transferable to many cryptic pests.
期刊介绍:
The Annals of the Entomological Society of America exists to stimulate interdisciplinary dialogue across the entomological disciplines and to advance cooperative interaction among diverse groups of entomologists. It seeks to attract and publish cutting-edge research, reviews, collections of articles on a common topic of broad interest, and discussion of topics with national or international importance. We especially welcome articles covering developing areas of research, controversial issues or debate, and topics of importance to society. Manuscripts that are primarily reports of new species, methodology, pest management, or the biology of single species generally will be referred to other journals of the ESA. The most important criteria for acceptance are quality of work and breadth of interest to the readership.