Kantorovich型、Schwarz和Berezin数不等式的改进

Q3 Mathematics
M. Garayev, F. Bouzeffour, M. Gürdal, C. M. Yangoz
{"title":"Kantorovich型、Schwarz和Berezin数不等式的改进","authors":"M. Garayev, F. Bouzeffour, M. Gürdal, C. M. Yangoz","doi":"10.17398/2605-5686.35.1.1","DOIUrl":null,"url":null,"abstract":"In this article, we use Kantorovich and Kantorovich type inequalities in order to prove some \nnew Berezin number inequalities. Also, by using a refinement of the classical Schwarz inequality, we \nprove Berezin number inequalities for powers of f(A), where A is self-adjoint operator on the Hardy \nspace H2 \n(D) and f is a positive continuous function. Some related questions are also discussed.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Refinements of Kantorovich type, Schwarz and Berezin number inequalities\",\"authors\":\"M. Garayev, F. Bouzeffour, M. Gürdal, C. M. Yangoz\",\"doi\":\"10.17398/2605-5686.35.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we use Kantorovich and Kantorovich type inequalities in order to prove some \\nnew Berezin number inequalities. Also, by using a refinement of the classical Schwarz inequality, we \\nprove Berezin number inequalities for powers of f(A), where A is self-adjoint operator on the Hardy \\nspace H2 \\n(D) and f is a positive continuous function. Some related questions are also discussed.\",\"PeriodicalId\":33668,\"journal\":{\"name\":\"Extracta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracta Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17398/2605-5686.35.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.35.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14

摘要

本文利用Kantorovich和Kantorovic型不等式来证明一些新的Berezin数不等式。此外,通过对经典Schwarz不等式的改进,我们证明了f(a)幂的Berezin数不等式,其中a是Hardy空间H2(D)上的自伴随算子,f是正连续函数。文中还讨论了一些相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinements of Kantorovich type, Schwarz and Berezin number inequalities
In this article, we use Kantorovich and Kantorovich type inequalities in order to prove some new Berezin number inequalities. Also, by using a refinement of the classical Schwarz inequality, we prove Berezin number inequalities for powers of f(A), where A is self-adjoint operator on the Hardy space H2 (D) and f is a positive continuous function. Some related questions are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extracta Mathematicae
Extracta Mathematicae Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
6
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信