M. Garayev, F. Bouzeffour, M. Gürdal, C. M. Yangoz
{"title":"Kantorovich型、Schwarz和Berezin数不等式的改进","authors":"M. Garayev, F. Bouzeffour, M. Gürdal, C. M. Yangoz","doi":"10.17398/2605-5686.35.1.1","DOIUrl":null,"url":null,"abstract":"In this article, we use Kantorovich and Kantorovich type inequalities in order to prove some \nnew Berezin number inequalities. Also, by using a refinement of the classical Schwarz inequality, we \nprove Berezin number inequalities for powers of f(A), where A is self-adjoint operator on the Hardy \nspace H2 \n(D) and f is a positive continuous function. Some related questions are also discussed.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Refinements of Kantorovich type, Schwarz and Berezin number inequalities\",\"authors\":\"M. Garayev, F. Bouzeffour, M. Gürdal, C. M. Yangoz\",\"doi\":\"10.17398/2605-5686.35.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we use Kantorovich and Kantorovich type inequalities in order to prove some \\nnew Berezin number inequalities. Also, by using a refinement of the classical Schwarz inequality, we \\nprove Berezin number inequalities for powers of f(A), where A is self-adjoint operator on the Hardy \\nspace H2 \\n(D) and f is a positive continuous function. Some related questions are also discussed.\",\"PeriodicalId\":33668,\"journal\":{\"name\":\"Extracta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracta Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17398/2605-5686.35.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.35.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Refinements of Kantorovich type, Schwarz and Berezin number inequalities
In this article, we use Kantorovich and Kantorovich type inequalities in order to prove some
new Berezin number inequalities. Also, by using a refinement of the classical Schwarz inequality, we
prove Berezin number inequalities for powers of f(A), where A is self-adjoint operator on the Hardy
space H2
(D) and f is a positive continuous function. Some related questions are also discussed.