卡尔喀土坝沉降模拟的Mohr-Coulomb和硬化土本构模型比较

IF 0.3 Q4 ENGINEERING, GEOLOGICAL
H. Samadi-Boroujeni, A. Haghshenas-Adarmanabadi, M. Shayannejad, H. Khabbaz
{"title":"卡尔喀土坝沉降模拟的Mohr-Coulomb和硬化土本构模型比较","authors":"H. Samadi-Boroujeni, A. Haghshenas-Adarmanabadi, M. Shayannejad, H. Khabbaz","doi":"10.56295/agj5836","DOIUrl":null,"url":null,"abstract":"This paper presents the settlement behaviour of Karkheh earth dam during its construction and operation stages. Karkheh is one of the largest earth dams in the world in terms of its reservoir capacity and body volume. The settlement of such a large body of soil can affect the performance of the dam elements and endanger downstream areas; should a breach or failure occur in the dam, more than two million people will be affected. It is crucial to know the settlement behaviour of this structure and use the existing results to predict its future settlements and calibrate the existing stress-strain models. For anticipation of dam settlement the measured displacement from the portable probe anchor magnets installed in the dam body are compared to the results of numerical simulations. The available data cover a period of 12 years including construction, and two material impounding and operation periods of the dam. The numerical analysis is performed in 2D plane-strain conditions and two material models are used, including Mohr-Coulomb (MC) and Hardening Soil (HS) models. The comparison between the calculation results and the measured vertical deformations in the dam site reveals that the accuracy of model for the deformations in the middle levels of dam is better than those of the crest for both applied material models in construction and impounding stages. The maximum settlement differences between computed and observed values are 0.05 m for MC model and 0.01 m for HS model. For the operation stage, the error of calculated settlements for the MC model is smaller; hence the results of this model might be more reliable for prediction of future dam settlements. The similar trends, obtained from both material models, exhibit the suitability of the model parameters used in the simulations.","PeriodicalId":43619,"journal":{"name":"Australian Geomechanics Journal","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Mohr-Coulomb and hardening soil constitutive models for simulation of settlements in the Karkheh earth dam\",\"authors\":\"H. Samadi-Boroujeni, A. Haghshenas-Adarmanabadi, M. Shayannejad, H. Khabbaz\",\"doi\":\"10.56295/agj5836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the settlement behaviour of Karkheh earth dam during its construction and operation stages. Karkheh is one of the largest earth dams in the world in terms of its reservoir capacity and body volume. The settlement of such a large body of soil can affect the performance of the dam elements and endanger downstream areas; should a breach or failure occur in the dam, more than two million people will be affected. It is crucial to know the settlement behaviour of this structure and use the existing results to predict its future settlements and calibrate the existing stress-strain models. For anticipation of dam settlement the measured displacement from the portable probe anchor magnets installed in the dam body are compared to the results of numerical simulations. The available data cover a period of 12 years including construction, and two material impounding and operation periods of the dam. The numerical analysis is performed in 2D plane-strain conditions and two material models are used, including Mohr-Coulomb (MC) and Hardening Soil (HS) models. The comparison between the calculation results and the measured vertical deformations in the dam site reveals that the accuracy of model for the deformations in the middle levels of dam is better than those of the crest for both applied material models in construction and impounding stages. The maximum settlement differences between computed and observed values are 0.05 m for MC model and 0.01 m for HS model. For the operation stage, the error of calculated settlements for the MC model is smaller; hence the results of this model might be more reliable for prediction of future dam settlements. The similar trends, obtained from both material models, exhibit the suitability of the model parameters used in the simulations.\",\"PeriodicalId\":43619,\"journal\":{\"name\":\"Australian Geomechanics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Geomechanics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56295/agj5836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Geomechanics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56295/agj5836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了Karkheh土坝在施工和运行阶段的沉降特性。就水库容量和坝体体积而言,Karkheh是世界上最大的土坝之一。如此大的土体沉降会影响大坝构件的性能,并危及下游地区;如果大坝发生决口或溃坝,将有200多万人受到影响。了解该结构的沉降行为,并利用现有结果预测其未来的沉降和校准现有的应力-应变模型至关重要。为了预测大坝沉降,将安装在坝体中的便携式探针锚磁体的测量位移与数值模拟结果进行了比较。可用数据涵盖了12年的时间,包括大坝的施工和两个材料蓄水和运行期。数值分析是在二维平面应变条件下进行的,使用了两种材料模型,包括莫尔-库仑(MC)和硬化土(HS)模型。计算结果与实测坝址垂直变形的比较表明,无论是施工阶段还是蓄水阶段,大坝中间层变形模型的精度均优于坝顶变形模型。MC模型的计算值和观测值之间的最大沉降差为0.05 m,HS模型的最大沉降差异为0.01 m。对于运行阶段,MC模型的沉降计算误差较小;因此,该模型的结果可能更可靠地预测未来的大坝沉降。从两种材料模型中获得的相似趋势表明了模拟中使用的模型参数的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Mohr-Coulomb and hardening soil constitutive models for simulation of settlements in the Karkheh earth dam
This paper presents the settlement behaviour of Karkheh earth dam during its construction and operation stages. Karkheh is one of the largest earth dams in the world in terms of its reservoir capacity and body volume. The settlement of such a large body of soil can affect the performance of the dam elements and endanger downstream areas; should a breach or failure occur in the dam, more than two million people will be affected. It is crucial to know the settlement behaviour of this structure and use the existing results to predict its future settlements and calibrate the existing stress-strain models. For anticipation of dam settlement the measured displacement from the portable probe anchor magnets installed in the dam body are compared to the results of numerical simulations. The available data cover a period of 12 years including construction, and two material impounding and operation periods of the dam. The numerical analysis is performed in 2D plane-strain conditions and two material models are used, including Mohr-Coulomb (MC) and Hardening Soil (HS) models. The comparison between the calculation results and the measured vertical deformations in the dam site reveals that the accuracy of model for the deformations in the middle levels of dam is better than those of the crest for both applied material models in construction and impounding stages. The maximum settlement differences between computed and observed values are 0.05 m for MC model and 0.01 m for HS model. For the operation stage, the error of calculated settlements for the MC model is smaller; hence the results of this model might be more reliable for prediction of future dam settlements. The similar trends, obtained from both material models, exhibit the suitability of the model parameters used in the simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian Geomechanics Journal
Australian Geomechanics Journal ENGINEERING, GEOLOGICAL-
CiteScore
0.40
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信