基于lstm的多元时间序列分析:以期刊访客预测为例

Anggie Wahyu Saputra, A. Wibawa, U. Pujianto, Agung Bella Putra Utama, A. Nafalski
{"title":"基于lstm的多元时间序列分析:以期刊访客预测为例","authors":"Anggie Wahyu Saputra, A. Wibawa, U. Pujianto, Agung Bella Putra Utama, A. Nafalski","doi":"10.33096/ilkom.v14i1.1106.57-62","DOIUrl":null,"url":null,"abstract":"Forecasting is the process of predicting something in the future based on previous patterns. Forecasting will never be 100% accurate because the future has a problem of uncertainty. However, using the right method can make forecasting have a low error rate value to provide a good forecast for the future. This study aims to determine the effect of increasing the number of hidden layers and neurons on the performance of the long short-term memory (LSTM) forecasting method. LSTM performance measurement is done by root mean square error (RMSE) in various architectural scenarios. The LSTM algorithm is considered capable of handling long-term dependencies on its input and can predict data for a relatively long time. Based on research conducted from all models, the best results were obtained with an RMSE value of 0.699 obtained in model 1 with the number of hidden layers 2 and 64 neurons. Adding the number of hidden layers can significantly affect the RMSE results using neurons 16 and 32 in Model 1.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"LSTM-based Multivariate Time-Series Analysis: A Case of Journal Visitors Forecasting\",\"authors\":\"Anggie Wahyu Saputra, A. Wibawa, U. Pujianto, Agung Bella Putra Utama, A. Nafalski\",\"doi\":\"10.33096/ilkom.v14i1.1106.57-62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting is the process of predicting something in the future based on previous patterns. Forecasting will never be 100% accurate because the future has a problem of uncertainty. However, using the right method can make forecasting have a low error rate value to provide a good forecast for the future. This study aims to determine the effect of increasing the number of hidden layers and neurons on the performance of the long short-term memory (LSTM) forecasting method. LSTM performance measurement is done by root mean square error (RMSE) in various architectural scenarios. The LSTM algorithm is considered capable of handling long-term dependencies on its input and can predict data for a relatively long time. Based on research conducted from all models, the best results were obtained with an RMSE value of 0.699 obtained in model 1 with the number of hidden layers 2 and 64 neurons. Adding the number of hidden layers can significantly affect the RMSE results using neurons 16 and 32 in Model 1.\",\"PeriodicalId\":33690,\"journal\":{\"name\":\"Ilkom Jurnal Ilmiah\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ilkom Jurnal Ilmiah\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33096/ilkom.v14i1.1106.57-62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v14i1.1106.57-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

预测是根据以前的模式预测未来的过程。预测永远不会100%准确,因为未来存在不确定性问题。然而,使用正确的方法可以使预测具有较低的错误率值,从而为未来提供良好的预测。本研究旨在确定增加隐藏层和神经元数量对长短期记忆(LSTM)预测方法性能的影响。LSTM性能测量是通过各种体系结构场景中的均方根误差(RMSE)来完成的。LSTM算法被认为能够处理对其输入的长期依赖性,并且可以在相对较长的时间内预测数据。基于对所有模型进行的研究,在隐藏层数量为2和64个神经元的模型1中获得了最佳结果,RMSE值为0.699。添加隐藏层的数量可以显著影响使用模型1中的神经元16和32的RMSE结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSTM-based Multivariate Time-Series Analysis: A Case of Journal Visitors Forecasting
Forecasting is the process of predicting something in the future based on previous patterns. Forecasting will never be 100% accurate because the future has a problem of uncertainty. However, using the right method can make forecasting have a low error rate value to provide a good forecast for the future. This study aims to determine the effect of increasing the number of hidden layers and neurons on the performance of the long short-term memory (LSTM) forecasting method. LSTM performance measurement is done by root mean square error (RMSE) in various architectural scenarios. The LSTM algorithm is considered capable of handling long-term dependencies on its input and can predict data for a relatively long time. Based on research conducted from all models, the best results were obtained with an RMSE value of 0.699 obtained in model 1 with the number of hidden layers 2 and 64 neurons. Adding the number of hidden layers can significantly affect the RMSE results using neurons 16 and 32 in Model 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信