基于时变DCCA相关系数的金融网络动态连通性

P. Ferreira, Oussama Tilfani, E. Pereira, Cleónidas Tavares, H. Pereira, My Youssef El Boukfaoui
{"title":"基于时变DCCA相关系数的金融网络动态连通性","authors":"P. Ferreira, Oussama Tilfani, E. Pereira, Cleónidas Tavares, H. Pereira, My Youssef El Boukfaoui","doi":"10.2478/erfin-2021-0004","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to analyse the connectivity of 13 stock markets, between 1998 and 2019, with a time-varying proposal, to evaluate evolution of the linkage between these markets over time. To do so, we propose to use a network built based on the correlation coefficients from the Detrended Cross-Correlation Analysis, using a sliding windows approach. Besides allowing for analysis over time, our approach also enables us to verify how the network behaves for different time scales, which enriches the analysis. We use two different properties of networks: global efficiency and average grade, to measure the network’s connectivity over time. We find that the markets under analysis became more connected before the subprime crisis, with this behavior extending even after the Eurozone crisis, showing that during extreme events there is an increase in financial risk, as found in the international literature.","PeriodicalId":33177,"journal":{"name":"Econometric Research in Finance","volume":"6 1","pages":"57 - 75"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Connectivity in a Financial Network Using Time-Varying DCCA Correlation Coefficients\",\"authors\":\"P. Ferreira, Oussama Tilfani, E. Pereira, Cleónidas Tavares, H. Pereira, My Youssef El Boukfaoui\",\"doi\":\"10.2478/erfin-2021-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper aims to analyse the connectivity of 13 stock markets, between 1998 and 2019, with a time-varying proposal, to evaluate evolution of the linkage between these markets over time. To do so, we propose to use a network built based on the correlation coefficients from the Detrended Cross-Correlation Analysis, using a sliding windows approach. Besides allowing for analysis over time, our approach also enables us to verify how the network behaves for different time scales, which enriches the analysis. We use two different properties of networks: global efficiency and average grade, to measure the network’s connectivity over time. We find that the markets under analysis became more connected before the subprime crisis, with this behavior extending even after the Eurozone crisis, showing that during extreme events there is an increase in financial risk, as found in the international literature.\",\"PeriodicalId\":33177,\"journal\":{\"name\":\"Econometric Research in Finance\",\"volume\":\"6 1\",\"pages\":\"57 - 75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Research in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/erfin-2021-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Research in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/erfin-2021-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文旨在分析1998年至2019年间13个股票市场的连通性,并提出时变建议,以评估这些市场之间的联系随时间的演变。为此,我们建议使用基于去趋势互相关分析的相关系数构建的网络,使用滑动窗口方法。除了允许随时间进行分析外,我们的方法还使我们能够验证网络在不同时间尺度下的行为,这丰富了分析。我们使用网络的两个不同特性:全局效率和平均等级,来衡量网络随时间的连通性。我们发现,被分析的市场在次贷危机之前变得更加紧密,这种行为甚至在欧元区危机之后也在延续,这表明在极端事件期间,金融风险会增加,正如国际文献中所发现的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Connectivity in a Financial Network Using Time-Varying DCCA Correlation Coefficients
Abstract This paper aims to analyse the connectivity of 13 stock markets, between 1998 and 2019, with a time-varying proposal, to evaluate evolution of the linkage between these markets over time. To do so, we propose to use a network built based on the correlation coefficients from the Detrended Cross-Correlation Analysis, using a sliding windows approach. Besides allowing for analysis over time, our approach also enables us to verify how the network behaves for different time scales, which enriches the analysis. We use two different properties of networks: global efficiency and average grade, to measure the network’s connectivity over time. We find that the markets under analysis became more connected before the subprime crisis, with this behavior extending even after the Eurozone crisis, showing that during extreme events there is an increase in financial risk, as found in the international literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信