索驱动连续体机器人动态控制的提取神经状态相关Riccati方程反馈控制器

IF 2.3 4区 计算机科学 Q2 Computer Science
Mohammadamin Samadi Khoshkho, Zahra Samadikhoshkho, M. Lipsett
{"title":"索驱动连续体机器人动态控制的提取神经状态相关Riccati方程反馈控制器","authors":"Mohammadamin Samadi Khoshkho, Zahra Samadikhoshkho, M. Lipsett","doi":"10.1177/17298806231174737","DOIUrl":null,"url":null,"abstract":"This article presents a novel learning-based optimal control approach for dynamic control of continuum robots. Working and interacting with a confined and unstructured environment, nonlinear coupling, and dynamic uncertainty are only some of the difficulties that make developing and implementing a continuum robot controller challenging. Due to the complexity of the control design process, a number of researchers have used simplified kinematics in the controller design. The nonlinear optimal control technique presented here is based on the state-dependent Riccati equation and developed with consideration of the dynamics of the continuum robot. To address the high computational demand of the state-dependent Riccati equation controller, the distilled neural technique is adopted to facilitate the real-time controller implementation. The efficiency of the control scheme with different neural networks is demonstrated using simulation results.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distilled neural state-dependent Riccati equation feedback controller for dynamic control of a cable-driven continuum robot\",\"authors\":\"Mohammadamin Samadi Khoshkho, Zahra Samadikhoshkho, M. Lipsett\",\"doi\":\"10.1177/17298806231174737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel learning-based optimal control approach for dynamic control of continuum robots. Working and interacting with a confined and unstructured environment, nonlinear coupling, and dynamic uncertainty are only some of the difficulties that make developing and implementing a continuum robot controller challenging. Due to the complexity of the control design process, a number of researchers have used simplified kinematics in the controller design. The nonlinear optimal control technique presented here is based on the state-dependent Riccati equation and developed with consideration of the dynamics of the continuum robot. To address the high computational demand of the state-dependent Riccati equation controller, the distilled neural technique is adopted to facilitate the real-time controller implementation. The efficiency of the control scheme with different neural networks is demonstrated using simulation results.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806231174737\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231174737","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于学习的连续体机器人动态控制最优控制方法。在受限和非结构化环境中工作和交互、非线性耦合和动态不确定性只是开发和实现连续体机器人控制器具有挑战性的一些困难。由于控制设计过程的复杂性,许多研究人员在控制器设计中使用了简化运动学。本文提出的非线性最优控制技术是基于状态相关的Riccati方程,并在考虑连续体机器人动力学的情况下发展起来的。为了解决状态相关Riccati方程控制器的高计算要求,采用了提取神经网络技术来促进控制器的实时实现。仿真结果表明了采用不同神经网络的控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distilled neural state-dependent Riccati equation feedback controller for dynamic control of a cable-driven continuum robot
This article presents a novel learning-based optimal control approach for dynamic control of continuum robots. Working and interacting with a confined and unstructured environment, nonlinear coupling, and dynamic uncertainty are only some of the difficulties that make developing and implementing a continuum robot controller challenging. Due to the complexity of the control design process, a number of researchers have used simplified kinematics in the controller design. The nonlinear optimal control technique presented here is based on the state-dependent Riccati equation and developed with consideration of the dynamics of the continuum robot. To address the high computational demand of the state-dependent Riccati equation controller, the distilled neural technique is adopted to facilitate the real-time controller implementation. The efficiency of the control scheme with different neural networks is demonstrated using simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信